{"title":"Experimental realization of Weaire–Phelan foams as photonic crystals","authors":"A. Aguilar Uribe, P. Yazhgur, F. Scheffold","doi":"10.1063/5.0166905","DOIUrl":null,"url":null,"abstract":"We experimentally investigate the properties of crystalline 3D Weaire–Phelan foam structures as photonic crystals. We generate templates on the computer and use direct laser writing (DLW) lithography to fabricate foam designs in a polymer material. Due to the complicated structure of the foams, conventional DLW does not offer the resolution to produce systems with a stop band for telecommunication wavelengths. We employ shrinkage by thermal processing to circumvent this problem and show experimentally that foam Plateau border networks built in this way provide a stop-band within the wavelength interval of λ = 1–2 μm, with the specific wavelength dependent on the degree of shrinkage. We also investigate the dependence of the position and strength of the stop-gap on the solid filling fraction.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"16 6","pages":"0"},"PeriodicalIF":5.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0166905","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We experimentally investigate the properties of crystalline 3D Weaire–Phelan foam structures as photonic crystals. We generate templates on the computer and use direct laser writing (DLW) lithography to fabricate foam designs in a polymer material. Due to the complicated structure of the foams, conventional DLW does not offer the resolution to produce systems with a stop band for telecommunication wavelengths. We employ shrinkage by thermal processing to circumvent this problem and show experimentally that foam Plateau border networks built in this way provide a stop-band within the wavelength interval of λ = 1–2 μm, with the specific wavelength dependent on the degree of shrinkage. We also investigate the dependence of the position and strength of the stop-gap on the solid filling fraction.
APL PhotonicsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍:
APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.