Where To Stop: Occurrence and Evolution of Translational Recoding Signals in RNA Viruses of Eukaryotes

Q2 Biochemistry, Genetics and Molecular Biology Gene expression Pub Date : 2023-09-28 DOI:10.14218/ge.2023.00025
Alexey A. Agranovsky
{"title":"Where To Stop: Occurrence and Evolution of Translational Recoding Signals in RNA Viruses of Eukaryotes","authors":"Alexey A. Agranovsky","doi":"10.14218/ge.2023.00025","DOIUrl":null,"url":null,"abstract":"Many (+)RNA viruses employ translational recoding mechanisms, such as programmed ribosomal readthrough and ribosomal frameshifting, to direct a fraction of translating ribosomes in the infected cell to recode or bypass a stop codon in the zero reading frame and continue translation, thus producing protein isoforms with distinct functions. This creates a means to regulate both the quantity and time of synthesis of canonical and fusion proteins. The viral programmed ribosomal readthrough and ribosomal frameshifting signals are variable, with some being just short RNA sequences encompassing a stop codon, whereas others require elaborate RNA-RNA and RNA-protein interactions. Within virus evolutionary lineages, a given type of recoding signal is not universal, and its presence may be specific to a virus family, species, or even strain. It is possible that the establishment of virus recoding mechanisms and expression patterns occurs after the appearance of extant virus lineages, and these recoding signals might be acquired on multiple occasions during evolution. Recoding signals are the key regulators of gene expression in several clinically important viruses, such as human immunodeficiency viruses 1 and 2, human T-cell lymphotropic retroviruses, and severe acute respiratory syndrome coronavirus 2, as well as in a number of other animal and plant viruses of concern. The knowledge of viral recoding mechanisms is expected to provide new perspectives for the development of antiviral and synthetic biology strategies.","PeriodicalId":12502,"journal":{"name":"Gene expression","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene expression","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14218/ge.2023.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Many (+)RNA viruses employ translational recoding mechanisms, such as programmed ribosomal readthrough and ribosomal frameshifting, to direct a fraction of translating ribosomes in the infected cell to recode or bypass a stop codon in the zero reading frame and continue translation, thus producing protein isoforms with distinct functions. This creates a means to regulate both the quantity and time of synthesis of canonical and fusion proteins. The viral programmed ribosomal readthrough and ribosomal frameshifting signals are variable, with some being just short RNA sequences encompassing a stop codon, whereas others require elaborate RNA-RNA and RNA-protein interactions. Within virus evolutionary lineages, a given type of recoding signal is not universal, and its presence may be specific to a virus family, species, or even strain. It is possible that the establishment of virus recoding mechanisms and expression patterns occurs after the appearance of extant virus lineages, and these recoding signals might be acquired on multiple occasions during evolution. Recoding signals are the key regulators of gene expression in several clinically important viruses, such as human immunodeficiency viruses 1 and 2, human T-cell lymphotropic retroviruses, and severe acute respiratory syndrome coronavirus 2, as well as in a number of other animal and plant viruses of concern. The knowledge of viral recoding mechanisms is expected to provide new perspectives for the development of antiviral and synthetic biology strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
到此为止:真核生物RNA病毒翻译重编码信号的发生和进化
许多(+)RNA病毒采用翻译重编码机制,如程序性核糖体读通和核糖体移框,指导受感染细胞中翻译核糖体的一部分重新编码或绕过零阅读框中的停止密码子并继续翻译,从而产生具有不同功能的蛋白质异构体。这创造了一种方法来调节标准和融合蛋白合成的数量和时间。病毒程序核糖体读通和核糖体移帧信号是可变的,其中一些只是包含停止密码子的短RNA序列,而另一些则需要复杂的RNA-RNA和RNA-蛋白质相互作用。在病毒进化谱系中,给定类型的重新编码信号不是普遍存在的,它的存在可能是特定于病毒科、物种甚至毒株的。病毒编码机制和表达模式的建立可能发生在现存病毒谱系出现之后,这些编码信号可能是在进化过程中多次获得的。在一些重要的临床病毒中,如人类免疫缺陷病毒1和2、人类t细胞淋巴细胞逆转录病毒和严重急性呼吸综合征冠状病毒2,以及其他一些令人关注的动植物病毒,重编码信号是基因表达的关键调控因子。对病毒编码机制的了解有望为抗病毒和合成生物学策略的发展提供新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Gene expression
Gene expression 生物-生物工程与应用微生物
CiteScore
3.80
自引率
0.00%
发文量
3
审稿时长
>12 weeks
期刊介绍: Gene Expression, The Journal of Liver Research will publish articles in all aspects of hepatology. Hepatology, as a research discipline, has seen unprecedented growth especially in the cellular and molecular mechanisms of hepatic health and disease, which continues to have a major impact on understanding liver development, stem cells, carcinogenesis, tissue engineering, injury, repair, regeneration, immunology, metabolism, fibrosis, and transplantation. Continued research and improved understanding in these areas will have a meaningful impact on liver disease prevention, diagnosis, and treatment. The existing journal Gene Expression has expanded its focus to become Gene Expression, The Journal of Liver Research to meet this growing demand. In its revised and expanded scope, the journal will publish high-impact original articles, reviews, short but complete articles, and special articles (editorials, commentaries, opinions) on all aspects of hepatology, making it a unique and invaluable resource for readers interested in this field. The expanded team, led by an Editor-in-Chief who is uniquely qualified and a renowned expert, along with a dynamic and functional editorial board, is determined to make this a premier journal in the field of hepatology.
期刊最新文献
Gene Expression Analysis Reveals Clinically Significant Genes Associated with Familial Hypercholesterolemia and Atherosclerosis Acute Myeloid Leukemia with Myelodysplasia-related Cytogenetic/Genetic-defined Abnormalities Masquerades as Acute Undifferentiated Leukemia Potential Epigenetic Modifiers Targeting the Alteration of Methylation in Colorectal Cancer (Epi)genetic Aspects of Metabolic Syndrome Pathogenesis in Relation to Brain-derived Neurotrophic Factor Expression: A Review Non-coding RNA and Atherosclerosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1