3D NUMERICAL MODELLING OF FIVE SUBMARINE LANDSLIDE SCENARIOS IN PERTH CANYON, AUSTRALIA TO ASSESS TSUNAMIGENIC HAZARD

Elise J. Buller, Kendall C. Mollison, Hannah E. Power
{"title":"3D NUMERICAL MODELLING OF FIVE SUBMARINE LANDSLIDE SCENARIOS IN PERTH CANYON, AUSTRALIA TO ASSESS TSUNAMIGENIC HAZARD","authors":"Elise J. Buller, Kendall C. Mollison, Hannah E. Power","doi":"10.9753/icce.v37.management.35","DOIUrl":null,"url":null,"abstract":"Submarine canyons have been identified on nearly all margins around the world (Urlaub et al., 2013). Their configuration and morphology has been attributed to several factors including geology, tectonism, sea-level variations, and sediment supply to the region (Laursen and Normark, 2002) with processes occurring over varying temporal and spatial scales driving complex morphologies (Drexler, et al., 2006). A common process in submarine canyons is the mass wasting of sediment in the form of submarine landslides (SMLS) (Brothers, et al., 2013). A SMLS is a displacement of sediment or debris driven by gravity where the downslope forces are greater than the forces that are acting to resist the mass-failures (Mountjoy and Micallef, 2018). The potential tsunami hazard posed by these SMLS was assessed by Buller et al. (2021) using empirical calculations which showed that these SMLSs posed a tsunami threat to the adjacent coastline with calculated wave amplitudes ranging from 2.13 – 15.90 m. However, the tsunami risk assessed in their study was a conservative initial assessment and did not consider how local bathymetry influenced tsunami propagation.","PeriodicalId":497926,"journal":{"name":"Proceedings of ... Conference on Coastal Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ... Conference on Coastal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9753/icce.v37.management.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Submarine canyons have been identified on nearly all margins around the world (Urlaub et al., 2013). Their configuration and morphology has been attributed to several factors including geology, tectonism, sea-level variations, and sediment supply to the region (Laursen and Normark, 2002) with processes occurring over varying temporal and spatial scales driving complex morphologies (Drexler, et al., 2006). A common process in submarine canyons is the mass wasting of sediment in the form of submarine landslides (SMLS) (Brothers, et al., 2013). A SMLS is a displacement of sediment or debris driven by gravity where the downslope forces are greater than the forces that are acting to resist the mass-failures (Mountjoy and Micallef, 2018). The potential tsunami hazard posed by these SMLS was assessed by Buller et al. (2021) using empirical calculations which showed that these SMLSs posed a tsunami threat to the adjacent coastline with calculated wave amplitudes ranging from 2.13 – 15.90 m. However, the tsunami risk assessed in their study was a conservative initial assessment and did not consider how local bathymetry influenced tsunami propagation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
澳洲珀斯峡谷五种海底滑坡情景的三维数值模拟,以评估引发海啸的危险
海底峡谷已经在世界上几乎所有的边缘地区被发现(Urlaub等人,2013)。它们的结构和形态归因于几个因素,包括地质、构造、海平面变化和该地区的沉积物供应(Laursen和Normark, 2002),在不同的时空尺度上发生的过程驱动了复杂的形态(Drexler等,2006)。海底峡谷中一个常见的过程是以海底滑坡(SMLS)的形式大量浪费沉积物(Brothers, et al., 2013)。SMLS是由重力驱动的沉积物或碎片的位移,其中下坡力大于用于抵抗质量破坏的力(Mountjoy和Micallef, 2018)。Buller等人(2021)利用经验计算评估了这些小浪产生的潜在海啸危害,结果表明,这些小浪产生的波浪幅值在2.13 - 15.90 m之间,对邻近海岸线构成海啸威胁。然而,在他们的研究中评估的海啸风险是一个保守的初步评估,并没有考虑到当地的水深测量对海啸传播的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SUBMESOSCALE SURFACE TIDAL, VORTICAL, AND RESIDUAL CIRCULATIONS IN A SEMI-ENCLOSED BAY CASE STUDY - WYE RIVER, VIC GEOCONTAINER SHORT TERM PORTECTION WORKS USING SHALLOW NEARSHORE BERM NOURISHMENTS TO ENHANCE BEACH WIDTH ANALYSIS OF STORM SURGE CHARACTERISTICS BASED ON TYPHOON PROPERTIES INNOVATIVE SEAWALL DESIGN DEVELOPMENT IN NSW, AUSTRALIA: 4 RECENT CASE STUDIES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1