{"title":"On nonlinear fractional Choquard equation with indefinite potential and general nonlinearity","authors":"Fangfang Liao, Fulai Chen, Shifeng Geng, Dong Liu","doi":"10.1186/s13661-023-01786-3","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider a class of fractional Choquard equations with indefinite potential $$ (-\\Delta )^{\\alpha}u+V(x)u= \\biggl[ \\int _{{\\mathbb{R}}^{N}} \\frac{M(\\epsilon y)G(u)}{ \\vert x-y \\vert ^{\\mu}}\\,\\mathrm{d}y \\biggr]M( \\epsilon x)g(u), \\quad x\\in {\\mathbb{R}}^{N}, $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>−</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mi>α</mml:mi> </mml:msup> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>V</mml:mi> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>[</mml:mo> <mml:msub> <mml:mo>∫</mml:mo> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>N</mml:mi> </mml:msup> </mml:msub> <mml:mfrac> <mml:mrow> <mml:mi>M</mml:mi> <mml:mo>(</mml:mo> <mml:mi>ϵ</mml:mi> <mml:mi>y</mml:mi> <mml:mo>)</mml:mo> <mml:mi>G</mml:mi> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>x</mml:mi> <mml:mo>−</mml:mo> <mml:mi>y</mml:mi> <mml:msup> <mml:mo>|</mml:mo> <mml:mi>μ</mml:mi> </mml:msup> </mml:mrow> </mml:mfrac> <mml:mspace /> <mml:mi>d</mml:mi> <mml:mi>y</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> <mml:mi>M</mml:mi> <mml:mo>(</mml:mo> <mml:mi>ϵ</mml:mi> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> <mml:mi>g</mml:mi> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> <mml:mo>,</mml:mo> <mml:mspace /> <mml:mi>x</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>N</mml:mi> </mml:msup> <mml:mo>,</mml:mo> </mml:math> where $\\alpha \\in (0,1)$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:math> , $N> 2\\alpha $ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>N</mml:mi> <mml:mo>></mml:mo> <mml:mn>2</mml:mn> <mml:mi>α</mml:mi> </mml:math> , $0<\\mu <2\\alpha $ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mn>0</mml:mn> <mml:mo><</mml:mo> <mml:mi>μ</mml:mi> <mml:mo><</mml:mo> <mml:mn>2</mml:mn> <mml:mi>α</mml:mi> </mml:math> , ϵ is a positive parameter. Here $(-\\Delta )^{\\alpha}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>−</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mi>α</mml:mi> </mml:msup> </mml:math> stands for the fractional Laplacian, V is a linear potential with periodicity condition, and M is a nonlinear reaction potential with a global condition. We establish the existence and concentration of ground state solutions under general nonlinearity by using variational methods.","PeriodicalId":55333,"journal":{"name":"Boundary Value Problems","volume":"17 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13661-023-01786-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, we consider a class of fractional Choquard equations with indefinite potential $$ (-\Delta )^{\alpha}u+V(x)u= \biggl[ \int _{{\mathbb{R}}^{N}} \frac{M(\epsilon y)G(u)}{ \vert x-y \vert ^{\mu}}\,\mathrm{d}y \biggr]M( \epsilon x)g(u), \quad x\in {\mathbb{R}}^{N}, $$ (−Δ)αu+V(x)u=[∫RNM(ϵy)G(u)|x−y|μdy]M(ϵx)g(u),x∈RN, where $\alpha \in (0,1)$ α∈(0,1) , $N> 2\alpha $ N>2α , $0<\mu <2\alpha $ 0<μ<2α , ϵ is a positive parameter. Here $(-\Delta )^{\alpha}$ (−Δ)α stands for the fractional Laplacian, V is a linear potential with periodicity condition, and M is a nonlinear reaction potential with a global condition. We establish the existence and concentration of ground state solutions under general nonlinearity by using variational methods.
期刊介绍:
The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.