{"title":"Simulation of the rolling process of a laminated composite AMg3/D16/AMg3","authors":"Denis Salikhyanov, Nikolay Michurov","doi":"10.17212/1994-6309-2023-25.3-6-18","DOIUrl":null,"url":null,"abstract":"Introduction. Over the past decades, laminated composites based on aluminum alloys have been increasingly used in the aerospace and automotive industries. Laminated composites are usually produced by accumulative roll bonding, which results in the metallurgical bonding of initially prepared sheets. Hence, the main task of accumulative roll bonding is to obtain a reliable bond between materials. However, at present, the process of joining similar or dissimilar materials by plastic deformation is still a poorly understood phenomenon. In this regard, in recent years, methods of finite element modeling of the processes of joining materials have begun to develop intensively. The purpose of the work is to establish a relationship between stress-strain state parameters and the formation of a stable bond between aluminum alloys of different compositions. To achieve this goal, the following tasks are formulated: 1. Simulation of the laminated composite “AMg3/D16/AMg3” rolling process using data corresponding to physical experiments carried out at the Institute of Engineering Science of the Ural Branch of the Russian Academy of Sciences; 2. Selection and analysis of the most important stress-strain state parameters of the laminated composite “AMg3/D16/AMg3” rolling process. Research methods. Process simulation system Deform-3D was chosen as the main research tool. Results and Discussion. An analysis of the coordinate grid distortion and velocity vectors of material flow of layers revealed that the deformation is distributed inhomogeneously in the cross section after rolling: the outer layers flow more intensively compared to the middle layer. The maximum scatter of strain intensity ei in the cross section, observed at a maximum reduction ratio of 75%, is 12%. This allows one to accept for analytical calculations in the first approximation the assumption of deformation uniformity. A relationship is established between the beginning of the formation of a bond between composite layers and the threshold expansion of the contact surface and normal pressure at the interlayer boundary. In the final part of the study, future directions for improving the approaches of simulation the laminated composites rolling processes are proposed.","PeriodicalId":42889,"journal":{"name":"Obrabotka Metallov-Metal Working and Material Science","volume":"111 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Obrabotka Metallov-Metal Working and Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17212/1994-6309-2023-25.3-6-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction. Over the past decades, laminated composites based on aluminum alloys have been increasingly used in the aerospace and automotive industries. Laminated composites are usually produced by accumulative roll bonding, which results in the metallurgical bonding of initially prepared sheets. Hence, the main task of accumulative roll bonding is to obtain a reliable bond between materials. However, at present, the process of joining similar or dissimilar materials by plastic deformation is still a poorly understood phenomenon. In this regard, in recent years, methods of finite element modeling of the processes of joining materials have begun to develop intensively. The purpose of the work is to establish a relationship between stress-strain state parameters and the formation of a stable bond between aluminum alloys of different compositions. To achieve this goal, the following tasks are formulated: 1. Simulation of the laminated composite “AMg3/D16/AMg3” rolling process using data corresponding to physical experiments carried out at the Institute of Engineering Science of the Ural Branch of the Russian Academy of Sciences; 2. Selection and analysis of the most important stress-strain state parameters of the laminated composite “AMg3/D16/AMg3” rolling process. Research methods. Process simulation system Deform-3D was chosen as the main research tool. Results and Discussion. An analysis of the coordinate grid distortion and velocity vectors of material flow of layers revealed that the deformation is distributed inhomogeneously in the cross section after rolling: the outer layers flow more intensively compared to the middle layer. The maximum scatter of strain intensity ei in the cross section, observed at a maximum reduction ratio of 75%, is 12%. This allows one to accept for analytical calculations in the first approximation the assumption of deformation uniformity. A relationship is established between the beginning of the formation of a bond between composite layers and the threshold expansion of the contact surface and normal pressure at the interlayer boundary. In the final part of the study, future directions for improving the approaches of simulation the laminated composites rolling processes are proposed.