Multiperiod optimization of cooling water system with flexible topology network

IF 9.1 Q1 ENGINEERING, CHEMICAL Green Chemical Engineering Pub Date : 2023-11-05 DOI:10.1016/j.gce.2023.10.005
{"title":"Multiperiod optimization of cooling water system with flexible topology network","authors":"","doi":"10.1016/j.gce.2023.10.005","DOIUrl":null,"url":null,"abstract":"<div><p>Cooling water systems (CWSs) are extensively utilized in various industries to eliminate the excess heat and converse energy. Studies on CWSs mainly concentrated on finding the optimal cooler network structure. In addition, some works also considered the optimal design under varied operation conditions. However, in these works, once the optimal design of the cooler's network is determined, its arrangement remains fixed and cannot be adapted to accommodate diverse operating conditions. In this work, a flexible topology network concept is proposed to make the adjustment of network structure possible under different operation conditions. The CWS with integrated air cooler and flexible topology network has better overall performance, represented by a mixed integer nonlinear programming (MINLP) model that require advanced tools such as GAMS software. Case studies revealed that the proposed methodology can realize better energy-saving performance, and improve the economic performance under varied operation conditions. The impact of critical flexible nodes on system configuration and economy is achieved by sensitivity analysis.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"5 4","pages":"Pages 461-472"},"PeriodicalIF":9.1000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666952823000596/pdfft?md5=285f79d92eb99fcba1ddc3508061ba55&pid=1-s2.0-S2666952823000596-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666952823000596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cooling water systems (CWSs) are extensively utilized in various industries to eliminate the excess heat and converse energy. Studies on CWSs mainly concentrated on finding the optimal cooler network structure. In addition, some works also considered the optimal design under varied operation conditions. However, in these works, once the optimal design of the cooler's network is determined, its arrangement remains fixed and cannot be adapted to accommodate diverse operating conditions. In this work, a flexible topology network concept is proposed to make the adjustment of network structure possible under different operation conditions. The CWS with integrated air cooler and flexible topology network has better overall performance, represented by a mixed integer nonlinear programming (MINLP) model that require advanced tools such as GAMS software. Case studies revealed that the proposed methodology can realize better energy-saving performance, and improve the economic performance under varied operation conditions. The impact of critical flexible nodes on system configuration and economy is achieved by sensitivity analysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
灵活拓扑网络冷却水系统的多期优化
冷却水系统(CWS)被广泛应用于各行各业,以消除多余的热量并转换能量。有关冷却水系统的研究主要集中在寻找最佳冷却器网络结构上。此外,一些研究还考虑了不同运行条件下的最优设计。然而,在这些研究中,冷却器网络的最佳设计一旦确定,其排列方式就会固定下来,无法适应不同的运行条件。本研究提出了一种灵活拓扑网络概念,以便在不同运行条件下调整网络结构。带有集成空气冷却器和灵活拓扑网络的 CWS 具有更好的整体性能,该性能由混合整数非线性编程(MINLP)模型表示,需要使用 GAMS 软件等先进工具。案例研究表明,所提出的方法可以实现更好的节能性能,并在不同运行条件下提高经济效益。关键柔性节点对系统配置和经济性的影响是通过灵敏度分析实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Green Chemical Engineering
Green Chemical Engineering Process Chemistry and Technology, Catalysis, Filtration and Separation
CiteScore
11.60
自引率
0.00%
发文量
58
审稿时长
51 days
期刊最新文献
Outside Back Cover OFC: Outside Front Cover OFC: Outside Front Cover Outside Back Cover Outside Back Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1