The urgent need to mitigate anthropogenic CO2 emissions has driven the development of energy-efficient carbon capture systems. This study investigated a [N1111][Triz]-H2O hybrid solvent for CO2 capture using integrated experimental and computational approaches. A multiscale methodology combining thermodynamic analysis, phase equilibrium measurements, and molecular dynamics (MD) simulations was employed to elucidate the absorption mechanisms and the composition-property relationships. The thermodynamic analysis, incorporating Henry's law, the non-random two-liquid (NRTL) model for activity coefficients, the Redlich-Kwong equation, and reaction equilibrium constraints, accurately predicted the gas-liquid equilibrium (GLE) behavior, achieving an R2 of 99.1% and an average absolute relative deviation (AARD) of 7.76%. The [N1111][Triz]-H2O hybrid solvent exhibits exceptional CO2 absorption performance, with a capacity of 0.25 mol/mol (at 313.15 K and 0.025 MPa for wIL = 80%), attributed to synergistic physical-chemical interactions. MD simulations reveal the dynamic CO2 absorption process in [N1111][Triz]-H2O hybrid solvents: CO2 molecules preferentially accumulate at the gas-liquid interface before gradually diffusing into the bulk phase. Increasing the [N1111][Triz] content enhances CO2 absorption capacity by providing more interaction sites, while water modulates interfacial behavior and diffusion kinetics. This research provides in-depth insights into the absorption behaviors of [N1111][Triz]-H2O hybrid solvents for CO2, offering theoretical support for the development of efficient CO2 capture solvents and highlighting its potential for industrial implementation.
扫码关注我们
求助内容:
应助结果提醒方式:
