Sarah A Wegmueller, William B Monahan, Philip A Townsend
{"title":"Tree Condition and Analysis Program – Detecting Forest Disturbance at the Tree Level across the Contiguous United States with High Resolution Imagery","authors":"Sarah A Wegmueller, William B Monahan, Philip A Townsend","doi":"10.1093/jofore/fvad039","DOIUrl":null,"url":null,"abstract":"Abstract Effective management of forest insects and diseases requires detection of abnormal mortality, particularly among a single species, sufficiently early to enable effective management. Remote detection of individual trees crowns requires a spatial resolution not available from satellites such as Landsat or Sentinel-2. In the United States, there are currently few operational systems capable of effectively and affordably detecting and mapping tree mortality over broad landscapes using high-resolution imagery. Here, we introduce the Tree Condition and Analysis Program (TreeCAP), an open-source system that uses freely available imagery from the National Agriculture Imagery Program (NAIP) to create maps of tree condition (healthy or damaged). We demonstrate the potential applications of TreeCAP in four study sites: (1) beetle-killed pines in California, (2) emerald ash borer progression in Wisconsin, (3) hemlock wooly adelgid mortality in Pennsylvania, and (4) drought damage in Texas. We achieved an average overall accuracy of 87% across all study sites. Study Implications: TreeCAP is a software program, ready for operational use, intended to help manage forest health in the contiguous United States at the individual tree level. Using freely available high-resolution NAIP airborne imagery and LiDAR data, TreeCAP maps tree crown condition, highlighting areas that may warrant further attention to forest managers. We demonstrate the potential applications of TreeCAP in four study sites: (1) beetle-killed pines in California, (2) emerald ash borer progression in Wisconsin, (3) hemlock wooly adelgid mortality in Pennsylvania, and (4) drought damage in Texas. We achieved an average overall accuracy of 87% across all study sites.","PeriodicalId":15821,"journal":{"name":"Journal of Forestry","volume":"68 7-8","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forestry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jofore/fvad039","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Effective management of forest insects and diseases requires detection of abnormal mortality, particularly among a single species, sufficiently early to enable effective management. Remote detection of individual trees crowns requires a spatial resolution not available from satellites such as Landsat or Sentinel-2. In the United States, there are currently few operational systems capable of effectively and affordably detecting and mapping tree mortality over broad landscapes using high-resolution imagery. Here, we introduce the Tree Condition and Analysis Program (TreeCAP), an open-source system that uses freely available imagery from the National Agriculture Imagery Program (NAIP) to create maps of tree condition (healthy or damaged). We demonstrate the potential applications of TreeCAP in four study sites: (1) beetle-killed pines in California, (2) emerald ash borer progression in Wisconsin, (3) hemlock wooly adelgid mortality in Pennsylvania, and (4) drought damage in Texas. We achieved an average overall accuracy of 87% across all study sites. Study Implications: TreeCAP is a software program, ready for operational use, intended to help manage forest health in the contiguous United States at the individual tree level. Using freely available high-resolution NAIP airborne imagery and LiDAR data, TreeCAP maps tree crown condition, highlighting areas that may warrant further attention to forest managers. We demonstrate the potential applications of TreeCAP in four study sites: (1) beetle-killed pines in California, (2) emerald ash borer progression in Wisconsin, (3) hemlock wooly adelgid mortality in Pennsylvania, and (4) drought damage in Texas. We achieved an average overall accuracy of 87% across all study sites.
期刊介绍:
The Journal of Forestry is the most widely circulated scholarly forestry journal in the world. In print since 1902, the mission of the Journal of Forestry is to advance the profession of forestry by keeping forest management professionals informed about significant developments and ideas in the many facets of forestry. The Journal is published bimonthly: January, March, May, July, September, and November.