Dieter P. Hoyer , Saskia Ting , Nina Rogacka , Sven Koitka , René Hosch , Nils Flaschel , Johannes Haubold , Eugen Malamutmann , Björn-Ole Stüben , Jürgen Treckmann , Felix Nensa , Giulia Baldini
{"title":"AI-based digital histopathology for perihilar cholangiocarcinoma: A step, not a jump","authors":"Dieter P. Hoyer , Saskia Ting , Nina Rogacka , Sven Koitka , René Hosch , Nils Flaschel , Johannes Haubold , Eugen Malamutmann , Björn-Ole Stüben , Jürgen Treckmann , Felix Nensa , Giulia Baldini","doi":"10.1016/j.jpi.2023.100345","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Perihilar cholangiocarcinoma (PHCC) is a rare malignancy with limited survival prediction accuracy. Artificial intelligence (AI) and digital pathology advancements have shown promise in predicting outcomes in cancer. We aimed to improve prognosis prediction for PHCC by combining AI-based histopathological slide analysis with clinical factors.</p></div><div><h3>Methods</h3><p>We retrospectively analyzed 317 surgically treated PHCC patients (January 2009–December 2018) at the University Hospital of Essen. Clinical data, surgical details, pathology, and outcomes were collected. Convolutional neural networks (CNN) analyzed whole-slide images. Survival models incorporated clinical and histological features.</p></div><div><h3>Results</h3><p>Among 142 eligible patients, independent survival predictors were tumor grade (G), tumor size (T), and intraoperative transfusion requirement. The CNN-based model combining clinical and histopathological features demonstrates proof of concept in prognosis prediction, limited by histopathological complexity and feature extraction challenges. However, the CNN-based model generated heatmaps assisting pathologists in identifying areas of interest.</p></div><div><h3>Conclusion</h3><p>AI-based digital pathology showed potential in PHCC prognosis prediction, though refinement is necessary for clinical relevance. Future research should focus on enhancing AI models and exploring novel approaches to improve PHCC patient prognosis prediction.</p></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"15 ","pages":"Article 100345"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2153353923001591/pdfft?md5=6306a1e73353f828e6b03fecfd67c6cf&pid=1-s2.0-S2153353923001591-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2153353923001591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Perihilar cholangiocarcinoma (PHCC) is a rare malignancy with limited survival prediction accuracy. Artificial intelligence (AI) and digital pathology advancements have shown promise in predicting outcomes in cancer. We aimed to improve prognosis prediction for PHCC by combining AI-based histopathological slide analysis with clinical factors.
Methods
We retrospectively analyzed 317 surgically treated PHCC patients (January 2009–December 2018) at the University Hospital of Essen. Clinical data, surgical details, pathology, and outcomes were collected. Convolutional neural networks (CNN) analyzed whole-slide images. Survival models incorporated clinical and histological features.
Results
Among 142 eligible patients, independent survival predictors were tumor grade (G), tumor size (T), and intraoperative transfusion requirement. The CNN-based model combining clinical and histopathological features demonstrates proof of concept in prognosis prediction, limited by histopathological complexity and feature extraction challenges. However, the CNN-based model generated heatmaps assisting pathologists in identifying areas of interest.
Conclusion
AI-based digital pathology showed potential in PHCC prognosis prediction, though refinement is necessary for clinical relevance. Future research should focus on enhancing AI models and exploring novel approaches to improve PHCC patient prognosis prediction.
期刊介绍:
The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.