Preparation and characterization of germanium dioxide nanostructure for gas sensor application: effect of laser parameters

IF 1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Digest Journal of Nanomaterials and Biostructures Pub Date : 2023-10-01 DOI:10.15251/djnb.2023.183.1139
J. A. Yousif, S. Alptekin, A. Ramizy
{"title":"Preparation and characterization of germanium dioxide nanostructure for gas sensor application: effect of laser parameters","authors":"J. A. Yousif, S. Alptekin, A. Ramizy","doi":"10.15251/djnb.2023.183.1139","DOIUrl":null,"url":null,"abstract":"In this article, a novel application of germanium dioxide (GeO2) as a gas sensor is systematically reported. In detail, GeO2 layers were deposited on quartz and n-type Si substrates, as a function of laser pulses, using combined laser ablation and thermal spray coating approaches. The attained layer/s were methodically inspected in term of their morphological, structural, and optical features; specifically, highly crystalline GeO2 structure was obtained for samples prepared using 1500 pulses and above. In the meanwhile, the obtained particle diameters were found to be within the range of 15 to 274 nm, while the estimated optical band gaps exhibited values from 3.85 to 4.0 eV. Simultaneously, the gas sensing behavior demonstrated a well-oriented performance for all devices, however, devices treated with 2500 pulses delivered stable trend with sensitivity value as high as 3 × 10−6. The rise/fall period revealed an adequate outcome (~10 𝑠𝑠𝑠𝑠𝑠𝑠.) for gas sensors fabricated via pulses of 1000 and above, with respected to the working temperature. The proposed framework delivers a substitute technique towards 2D metal oxide based eco-friendly-gas sensor.","PeriodicalId":11233,"journal":{"name":"Digest Journal of Nanomaterials and Biostructures","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest Journal of Nanomaterials and Biostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/djnb.2023.183.1139","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a novel application of germanium dioxide (GeO2) as a gas sensor is systematically reported. In detail, GeO2 layers were deposited on quartz and n-type Si substrates, as a function of laser pulses, using combined laser ablation and thermal spray coating approaches. The attained layer/s were methodically inspected in term of their morphological, structural, and optical features; specifically, highly crystalline GeO2 structure was obtained for samples prepared using 1500 pulses and above. In the meanwhile, the obtained particle diameters were found to be within the range of 15 to 274 nm, while the estimated optical band gaps exhibited values from 3.85 to 4.0 eV. Simultaneously, the gas sensing behavior demonstrated a well-oriented performance for all devices, however, devices treated with 2500 pulses delivered stable trend with sensitivity value as high as 3 × 10−6. The rise/fall period revealed an adequate outcome (~10 𝑠𝑠𝑠𝑠𝑠𝑠.) for gas sensors fabricated via pulses of 1000 and above, with respected to the working temperature. The proposed framework delivers a substitute technique towards 2D metal oxide based eco-friendly-gas sensor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气体传感器用二氧化锗纳米结构的制备与表征:激光参数的影响
本文系统地报道了二氧化锗(GeO2)作为气体传感器的新应用。详细地说,采用激光烧蚀和热喷涂相结合的方法,在石英和n型Si衬底上沉积了GeO2层,作为激光脉冲的函数。对获得的层/s进行了系统的形态学、结构和光学特征检查;具体来说,使用1500脉冲及以上脉冲制备的样品获得了高度结晶的GeO2结构。同时,得到的粒子直径在15 ~ 274 nm之间,光学带隙在3.85 ~ 4.0 eV之间。同时,所有器件的气体传感行为都表现出良好的定向性能,然而,2500脉冲处理的器件具有稳定的趋势,灵敏度值高达3 × 10−6。对于通过1000及以上脉冲制造的气体传感器,相对于工作温度而言,上升/下降周期显示了适当的结果(~10𝑠𝑠𝑠𝑠𝑠𝑠.)。所提出的框架为基于金属氧化物的二维环保气体传感器提供了一种替代技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Digest Journal of Nanomaterials and Biostructures
Digest Journal of Nanomaterials and Biostructures 工程技术-材料科学:综合
CiteScore
1.50
自引率
22.20%
发文量
116
审稿时长
4.3 months
期刊介绍: Under the aegis of the Academy of Romanian Scientists Edited by: -Virtual Institute of Physics operated by Virtual Company of Physics.
期刊最新文献
Photoluminescence properties of manganese activated calcium tungstate phosphors Preparation and characterization of strontium-doped bismuth borate glasses Synthesis of Mn doped nanostructured zinc oxide thin films for H2 gas sensing Microstructure, dielectric properties and phase transition of Y2O3-doped barium tin titanate ceramics Thickness effects on the physical characterization of nanostructured CuO thin films for hydrogen gas sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1