Processing dynamics of carbon nanotube-epoxy nanocomposites during 3D printing

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Cell Reports Physical Science Pub Date : 2023-10-01 DOI:10.1016/j.xcrp.2023.101617
Ali Zein Khater, M.A.S.R. Saadi, Sohini Bhattacharyya, Alex Kutana, Manoj Tripathi, Mithil Kamble, Shaowei Song, Minghe Lou, Morgan Barnes, Matthew D. Meyer, Vijay Vedhan Jayanthi Harikrishnan, Alan B. Dalton, Nikhil Koratkar, Chandra Sekhar Tiwary, Peter J. Boul, Boris Yakobson, Hanyu Zhu, Pulickel M. Ajayan, Muhammad M. Rahman
{"title":"Processing dynamics of carbon nanotube-epoxy nanocomposites during 3D printing","authors":"Ali Zein Khater, M.A.S.R. Saadi, Sohini Bhattacharyya, Alex Kutana, Manoj Tripathi, Mithil Kamble, Shaowei Song, Minghe Lou, Morgan Barnes, Matthew D. Meyer, Vijay Vedhan Jayanthi Harikrishnan, Alan B. Dalton, Nikhil Koratkar, Chandra Sekhar Tiwary, Peter J. Boul, Boris Yakobson, Hanyu Zhu, Pulickel M. Ajayan, Muhammad M. Rahman","doi":"10.1016/j.xcrp.2023.101617","DOIUrl":null,"url":null,"abstract":"Carbon nanotube (CNT)-reinforced polymer nanocomposites are promising candidates for a myriad of applications. Ad hoc CNT-polymer nanocomposite fabrication techniques inherently pose roadblocks to optimized processing, resulting in microstructural defects, i.e., void formation, poor interfacial adhesion, wettability, and agglomeration of CNTs inside the polymer matrix. Here, we show that a 3D printing technique offers improved processing of CNT-polymer nanocomposites. During printing, the shear-induced flow of an engineered nanocomposite ink through the micronozzle is beneficial, as it reduces the number of voids within the epoxy matrix, improves CNT dispersion and adhesion with epoxy, and partially aligns the CNTs. Such microstructural changes result in enhanced mechanical and thermal properties of the nanocomposites compared to their mold-cast counterparts. This work demonstrates the advantages of 3D printing in achieving improved processing dynamics for the fabrication of CNT-polymer nanocomposites with better structural and functional properties.","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"57 1","pages":"0"},"PeriodicalIF":7.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2023.101617","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon nanotube (CNT)-reinforced polymer nanocomposites are promising candidates for a myriad of applications. Ad hoc CNT-polymer nanocomposite fabrication techniques inherently pose roadblocks to optimized processing, resulting in microstructural defects, i.e., void formation, poor interfacial adhesion, wettability, and agglomeration of CNTs inside the polymer matrix. Here, we show that a 3D printing technique offers improved processing of CNT-polymer nanocomposites. During printing, the shear-induced flow of an engineered nanocomposite ink through the micronozzle is beneficial, as it reduces the number of voids within the epoxy matrix, improves CNT dispersion and adhesion with epoxy, and partially aligns the CNTs. Such microstructural changes result in enhanced mechanical and thermal properties of the nanocomposites compared to their mold-cast counterparts. This work demonstrates the advantages of 3D printing in achieving improved processing dynamics for the fabrication of CNT-polymer nanocomposites with better structural and functional properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳纳米管-环氧纳米复合材料在3D打印过程中的加工动态
碳纳米管(CNT)增强聚合物纳米复合材料具有广阔的应用前景。特别的碳纳米管-聚合物纳米复合材料制造技术本身就给优化加工带来了障碍,导致微观结构缺陷,即孔隙形成、界面粘附性差、润湿性差以及碳纳米管在聚合物基体内的团聚。在这里,我们展示了3D打印技术提供了碳纳米管聚合物纳米复合材料的改进加工。在打印过程中,工程纳米复合油墨通过微喷嘴的剪切诱导流动是有益的,因为它减少了环氧基体内的空隙数量,改善了碳纳米管的分散和与环氧树脂的粘附性,并部分对齐了碳纳米管。这种微观结构的变化导致纳米复合材料的力学和热性能比模铸的同类材料增强。这项工作证明了3D打印在制造具有更好结构和功能特性的碳纳米管聚合物纳米复合材料方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
期刊最新文献
Leveraging large language models for peptide antibiotic design. Ultrafast synthesis of zirconium-porphyrin framework nanocrystals from alkoxide precursors. Lignin as a bioderived modular surfactant and intercalant for Ti3C2Tx MXene stabilization and tunable functions. Sequence-dependent conformational preferences of disordered single-stranded RNA. A variational graph-partitioning approach to modeling protein liquid-liquid phase separation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1