Composite nanostructured growth of (CdS)0.75 (PbS)0.25/Si solar cell and its characterization

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Ovonic Research Pub Date : 2023-10-01 DOI:10.15251/jor.2023.195.567
E. M. Nasir, I. S. Naji, A. A. Ramadhan
{"title":"Composite nanostructured growth of (CdS)0.75 (PbS)0.25/Si solar cell and its characterization","authors":"E. M. Nasir, I. S. Naji, A. A. Ramadhan","doi":"10.15251/jor.2023.195.567","DOIUrl":null,"url":null,"abstract":"By using vacuum evaporation, thin films of the (CdS)0.75-(PbS)0.25 alloy have been deposited to form a nanocrystalline composite. Investigations were made into the morphology, electrical, optical and I-V characteristics of (CdS)0.75-(PbS)0.25 films asdeposited and after annealing at various temperatures. According to AFM measurements, the values of grain sizes rise as annealing temperatures rise, showing that the films' crystallinity has been increased through heat treatment. In addition, heat treatment results in an increase in surface roughness values, suggesting rougher films that could be employed in more applications. The prepared films have direct energy band gaps, and these band gaps increase with the increase in the degrees of annealing temperature. Additionally, Urbach energy values decrease with an increase in annealing temperature degrees, indicating a reduction in the tail defects and an enhancement in crystal structure through annealing. The produced films' conductivity raise when temperature in the range (RT-473)K increased, demonstrating that they are semiconducting films. At comparatively lower temperature degrees, the conduction is caused by carriers that are stimulated into localized states at the band edges. At relatively higher temperatures, the conductivity appears to be substantially temperature-dependent. As a result, the conduction mechanism results from carriers being excited into extended states beyond mobility edges. The photovoltaic measurement (I–V) properties, open circuit voltage, short circuit current, efficiency and fill factor of (CdS)0.75-(PbS)0.25 heterostructure cells have been examined under 100mW/cm2 . Interestingly, rising annealing had enhanced photovoltaic cell performances; the solar cell had shown its highest efficiency (0.42%) at 573K. From XRD the structures are polycrystalline with cubic and hexagonal structures indicating that there’s a mix of phases of PbS and CdS, the grain size and intensity raise with annealing temperatures.","PeriodicalId":49156,"journal":{"name":"Journal of Ovonic Research","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/jor.2023.195.567","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

By using vacuum evaporation, thin films of the (CdS)0.75-(PbS)0.25 alloy have been deposited to form a nanocrystalline composite. Investigations were made into the morphology, electrical, optical and I-V characteristics of (CdS)0.75-(PbS)0.25 films asdeposited and after annealing at various temperatures. According to AFM measurements, the values of grain sizes rise as annealing temperatures rise, showing that the films' crystallinity has been increased through heat treatment. In addition, heat treatment results in an increase in surface roughness values, suggesting rougher films that could be employed in more applications. The prepared films have direct energy band gaps, and these band gaps increase with the increase in the degrees of annealing temperature. Additionally, Urbach energy values decrease with an increase in annealing temperature degrees, indicating a reduction in the tail defects and an enhancement in crystal structure through annealing. The produced films' conductivity raise when temperature in the range (RT-473)K increased, demonstrating that they are semiconducting films. At comparatively lower temperature degrees, the conduction is caused by carriers that are stimulated into localized states at the band edges. At relatively higher temperatures, the conductivity appears to be substantially temperature-dependent. As a result, the conduction mechanism results from carriers being excited into extended states beyond mobility edges. The photovoltaic measurement (I–V) properties, open circuit voltage, short circuit current, efficiency and fill factor of (CdS)0.75-(PbS)0.25 heterostructure cells have been examined under 100mW/cm2 . Interestingly, rising annealing had enhanced photovoltaic cell performances; the solar cell had shown its highest efficiency (0.42%) at 573K. From XRD the structures are polycrystalline with cubic and hexagonal structures indicating that there’s a mix of phases of PbS and CdS, the grain size and intensity raise with annealing temperatures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
(CdS)0.75 (PbS)0.25/Si太阳能电池的复合纳米结构生长及其表征
采用真空蒸发法制备了(CdS)0.75-(PbS)0.25合金薄膜,制备了纳米晶复合材料。研究了(CdS)0.75-(PbS)0.25薄膜在不同温度下沉积和退火后的形貌、电学、光学和I-V特性。根据原子力显微镜的测量,晶粒尺寸随退火温度的升高而升高,表明薄膜的结晶度通过热处理得到了提高。此外,热处理导致表面粗糙度值的增加,这表明更粗糙的薄膜可以在更多的应用中使用。制备的薄膜具有直接能带隙,且能带隙随退火温度的升高而增大。此外,随着退火温度的升高,乌尔巴赫能值降低,表明退火后合金的尾部缺陷减少,晶体结构增强。当温度在(RT-473)K范围内升高时,所制薄膜的电导率升高,表明所制薄膜为半导体薄膜。在相对较低的温度度下,导通是由在带边缘被激发成局域态的载流子引起的。在相对较高的温度下,电导率似乎基本上取决于温度。因此,传导机制是由于载流子被激发到迁移率边缘以外的扩展状态。在100mW/cm2下测试了(CdS)0.75-(PbS)0.25异质结构电池的光电测量(I-V)性能、开路电压、短路电流、效率和填充系数。有趣的是,上升退火提高了光伏电池的性能;太阳能电池在573K时效率最高(0.42%)。XRD分析表明,其结构为立方和六方结构的多晶结构,表明存在PbS和CdS相的混合,晶粒尺寸和强度随退火温度的升高而升高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Ovonic Research
Journal of Ovonic Research MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
1.90
自引率
20.00%
发文量
77
期刊介绍: Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.
期刊最新文献
Simulation of sodium diborate glass containing lead and cadmium oxides for radiation shielding applications Effects of composition on the structure, thermal and some physical characteristics of Bi2O3-B2O3-ZnO-SiO2 glasse Novel synthesis and spectroscopic analysis of gallium oxide doped zinc phosphate glass Synthesis of zinc oxide thin films by spray pyrolysis technique Physical and sensing characterization of nanostructured Ag doped TiO2 thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1