Evaldo Jorge Alcántara Suárez, Victor Monzon Baeza
{"title":"Evaluating the Role of Machine Learning in Defense Applications and Industry","authors":"Evaldo Jorge Alcántara Suárez, Victor Monzon Baeza","doi":"10.3390/make5040078","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) has become a critical technology in the defense sector, enabling the development of advanced systems for threat detection, decision making, and autonomous operations. However, the increasing ML use in defense systems has raised ethical concerns related to accountability, transparency, and bias. In this paper, we provide a comprehensive analysis of the impact of ML on the defense sector, including the benefits and drawbacks of using ML in various applications such as surveillance, target identification, and autonomous weapons systems. We also discuss the ethical implications of using ML in defense, focusing on privacy, accountability, and bias issues. Finally, we present recommendations for mitigating these ethical concerns, including increased transparency, accountability, and stakeholder involvement in designing and deploying ML systems in the defense sector.","PeriodicalId":93033,"journal":{"name":"Machine learning and knowledge extraction","volume":"26 2","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge extraction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/make5040078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning (ML) has become a critical technology in the defense sector, enabling the development of advanced systems for threat detection, decision making, and autonomous operations. However, the increasing ML use in defense systems has raised ethical concerns related to accountability, transparency, and bias. In this paper, we provide a comprehensive analysis of the impact of ML on the defense sector, including the benefits and drawbacks of using ML in various applications such as surveillance, target identification, and autonomous weapons systems. We also discuss the ethical implications of using ML in defense, focusing on privacy, accountability, and bias issues. Finally, we present recommendations for mitigating these ethical concerns, including increased transparency, accountability, and stakeholder involvement in designing and deploying ML systems in the defense sector.