Praveen Bollini, Moiz Diwan, Pankaj Gautam, Ryan L. Hartman, Daniel A. Hickman*, Martin Johnson, Motoaki Kawase, Matthew Neurock, Gregory S. Patience, Alan Stottlemyer, Dionisios G. Vlachos and Benjamin Wilhite,
{"title":"Vision 2050: Reaction Engineering Roadmap","authors":"Praveen Bollini, Moiz Diwan, Pankaj Gautam, Ryan L. Hartman, Daniel A. Hickman*, Martin Johnson, Motoaki Kawase, Matthew Neurock, Gregory S. Patience, Alan Stottlemyer, Dionisios G. Vlachos and Benjamin Wilhite, ","doi":"10.1021/acsengineeringau.3c00023","DOIUrl":null,"url":null,"abstract":"<p >This perspective provides the collective opinions of a dozen chemical reaction engineers from academia and industry. In this sequel to the “Vision 2020: Reaction Engineering Roadmap,” published in 2001, we provide our opinions about the field of reaction engineering by addressing the current situation, identifying barriers to progress, and recommending research directions in the context of four industry sectors (basic chemicals, specialty chemicals, pharmaceuticals, and polymers) and five technology areas (reactor system selection, design and scale-up, chemical mechanism development and property estimation, catalysis, nonstandard reactor types, and electrochemical systems). Our collective input in this report includes numerous recommendations regarding research needs in the field of reaction engineering in the coming decades, including guidance for prioritizing efforts in workforce development, measurement science, and computational methods. We see important roles for reaction engineers in the plastics circularity challenge, decarbonization of processes, electrification of chemical reactors, conversion of batch processes to continuous processes, and development of intensified, dynamic reaction processes.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.3c00023","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This perspective provides the collective opinions of a dozen chemical reaction engineers from academia and industry. In this sequel to the “Vision 2020: Reaction Engineering Roadmap,” published in 2001, we provide our opinions about the field of reaction engineering by addressing the current situation, identifying barriers to progress, and recommending research directions in the context of four industry sectors (basic chemicals, specialty chemicals, pharmaceuticals, and polymers) and five technology areas (reactor system selection, design and scale-up, chemical mechanism development and property estimation, catalysis, nonstandard reactor types, and electrochemical systems). Our collective input in this report includes numerous recommendations regarding research needs in the field of reaction engineering in the coming decades, including guidance for prioritizing efforts in workforce development, measurement science, and computational methods. We see important roles for reaction engineers in the plastics circularity challenge, decarbonization of processes, electrification of chemical reactors, conversion of batch processes to continuous processes, and development of intensified, dynamic reaction processes.
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)