Comparison Of Artificial Neural Network Backpropagation and Garch Methods In Predicting Stock Price (Case Study: Indosat Shares 2012 – 2022)

Maktisen Ena
{"title":"Comparison Of Artificial Neural Network Backpropagation and Garch Methods In Predicting Stock Price (Case Study: Indosat Shares 2012 – 2022)","authors":"Maktisen Ena","doi":"10.20885/eksakta.vol4.iss2.art3","DOIUrl":null,"url":null,"abstract":"Abstract: One of the problems encountered in the forecasting process is the problem of heteroscedasticity. Heteroscedasticity occurs a lot, especially in stock data. Pt Share Price Indosat (tbk) from March 6 2012 – January 18 2022 has fluctuated from time to time, so the variance is heteroscedasticity. The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model and Artificial Neural Network Backpropagation (ANNBP) are methods that can be used on data with heteroscedasticity. The aim of this research is to obtain models and forecasting results from GARCH and ANN Backpropagation. In this study, the two models were compared based on the smallest MAPE value. This study uses daily data on the closing of Indosat shares. Forecasting is done on Indosat stock closing data, the total data is 2453 data divided into two parts, namely 80% training data totaling 1962 data and 20% training data totaling 491 data. Forecasting results from the GARCH model obtained a MAPE value of 11.04%, and the ANN Backpropagation model with 7 input layers, 20 hidden layers, obtained a MAPE value of 7.01%. Thus, the best model for predicting Indosat's share price in this study is the backpropagation model.","PeriodicalId":32099,"journal":{"name":"Eksakta Jurnal IlmuIlmu MIPA","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksakta Jurnal IlmuIlmu MIPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20885/eksakta.vol4.iss2.art3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: One of the problems encountered in the forecasting process is the problem of heteroscedasticity. Heteroscedasticity occurs a lot, especially in stock data. Pt Share Price Indosat (tbk) from March 6 2012 – January 18 2022 has fluctuated from time to time, so the variance is heteroscedasticity. The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model and Artificial Neural Network Backpropagation (ANNBP) are methods that can be used on data with heteroscedasticity. The aim of this research is to obtain models and forecasting results from GARCH and ANN Backpropagation. In this study, the two models were compared based on the smallest MAPE value. This study uses daily data on the closing of Indosat shares. Forecasting is done on Indosat stock closing data, the total data is 2453 data divided into two parts, namely 80% training data totaling 1962 data and 20% training data totaling 491 data. Forecasting results from the GARCH model obtained a MAPE value of 11.04%, and the ANN Backpropagation model with 7 input layers, 20 hidden layers, obtained a MAPE value of 7.01%. Thus, the best model for predicting Indosat's share price in this study is the backpropagation model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工神经网络反向传播与Garch方法在股价预测中的比较(以Indosat股票2012 - 2022为例)
摘要:在预测过程中遇到的问题之一是异方差问题。异方差现象时有发生,特别是在股票数据中。Pt股价指数(tbk)从2012年3月6日至2022年1月18日不时波动,因此方差为异方差。广义自回归条件异方差(GARCH)模型和人工神经网络反向传播(ANNBP)是处理异方差数据的有效方法。本研究的目的是获得GARCH和ANN反向传播的模型和预测结果。在本研究中,两种模型以最小的MAPE值为基础进行比较。本研究使用Indosat股票收盘时的每日数据。对Indosat股票收盘数据进行预测,总数据为2453个数据,分为两部分,即80%的训练数据共1962个数据和20%的训练数据共491个数据。GARCH模型预测结果的MAPE值为11.04%,具有7个输入层、20个隐藏层的ANN反向传播模型的MAPE值为7.01%。因此,本研究预测Indosat股价的最佳模型是反向传播模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
Comparison Of Artificial Neural Network Backpropagation and Garch Methods In Predicting Stock Price (Case Study: Indosat Shares 2012 – 2022) Pertumbuhan Stek Pucuk Mangga (Mangifera indica L.) terhadap Respon Konsentrasi IBA (Indole Butyric Acid) dan Macam Media Tanam Pengaruh Penambahan Tepung Mokag Tehadap Tingkat Kesukaan Konsumen Pada Kerupuk Biji Durian Spesies Serangga Hama Padi dan Jagung serta Intensitas Serangannya di Kabupaten Lahat Pertumbuhan dan Hasil Beberapa Varietas Padi Gogo Toleran Alumunium di Lahan Kering Masam Lampung Timur
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1