{"title":"Multi Objective Salp Swarm based Energy Efficient Routing Protocol for Heterogeneous Wireless Networks","authors":"Salima Nebti, Mohammed Redjimi","doi":"10.5121/ijcnc.2023.15505","DOIUrl":null,"url":null,"abstract":"Routing is a persistent concern in wireless sensor networks (WSNs), as getting data from sources to destinations can be a tricky task. Challenges include safeguarding the data being transferred, ensuring network longevity, and preserving energy in harsh environmental conditions. Consequently, this study delves into the suitability of using multi-objective swarm optimization to route heterogeneous WSNs in the hope of mitigating these issues while boosting the speed and accuracy of data transmission. In order to achieve better performance in terms of load balancing and reducing energy expenditure, the MOSSA-BA algorithm was developed. This algorithm combines the Multi-Objective Salp Swarm Algorithm (MOSSA) with the exploiting strategy of the artificial bee colony (BA) in the neighbourhood of Salps. Inspired by the SEP and EDEEC protocols, the integrated solutions of MOSSA-BA were used to route two and three levels of heterogeneous networks. The embedded solutions provided outstanding performance in regards to FND, HND, LND, percentage of remaining energy, and the number of packages delivered to the base station. Compared to SEP, EDEEC, and other competitors based on MOSSA and a modified multi-objective particle swarm optimization (MOPSO), the MOSSA-BA-based protocols demonstrated energy-saving percentages of more than 34% in medium-sized areas of interest and over 22% in large-sized areas of detection.","PeriodicalId":37554,"journal":{"name":"International Journal of Computer Networks and Communications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Networks and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijcnc.2023.15505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Routing is a persistent concern in wireless sensor networks (WSNs), as getting data from sources to destinations can be a tricky task. Challenges include safeguarding the data being transferred, ensuring network longevity, and preserving energy in harsh environmental conditions. Consequently, this study delves into the suitability of using multi-objective swarm optimization to route heterogeneous WSNs in the hope of mitigating these issues while boosting the speed and accuracy of data transmission. In order to achieve better performance in terms of load balancing and reducing energy expenditure, the MOSSA-BA algorithm was developed. This algorithm combines the Multi-Objective Salp Swarm Algorithm (MOSSA) with the exploiting strategy of the artificial bee colony (BA) in the neighbourhood of Salps. Inspired by the SEP and EDEEC protocols, the integrated solutions of MOSSA-BA were used to route two and three levels of heterogeneous networks. The embedded solutions provided outstanding performance in regards to FND, HND, LND, percentage of remaining energy, and the number of packages delivered to the base station. Compared to SEP, EDEEC, and other competitors based on MOSSA and a modified multi-objective particle swarm optimization (MOPSO), the MOSSA-BA-based protocols demonstrated energy-saving percentages of more than 34% in medium-sized areas of interest and over 22% in large-sized areas of detection.
期刊介绍:
The International Journal of Computer Networks & Communications (IJCNC) is a bi monthly open access peer-reviewed journal that publishes articles which contribute new results in all areas of Computer Networks & Communications.The journal focuses on all technical and practical aspects of Computer Networks & data Communications. The goal of this journal is to bring together researchers and practitioners from academia and industry to focus on advanced networking concepts and establishing new collaborations in these areas. Authors are solicited to contribute to this journal by submitting articles that illustrate research results, projects, surveying works and industrial experiences that describe significant advances in the Computer Networks & Communications.