Sentiment-Driven Cryptocurrency Price Prediction: A Machine Learning Approach Utilizing Historical Data and Social Media Sentiment Analysis

Saachin Bhatt, Mustansar Ghazanfar, Mohammad Hossein Amirhosseini
{"title":"Sentiment-Driven Cryptocurrency Price Prediction: A Machine Learning Approach Utilizing Historical Data and Social Media Sentiment Analysis","authors":"Saachin Bhatt, Mustansar Ghazanfar, Mohammad Hossein Amirhosseini","doi":"10.5121/mlaij.2023.10301","DOIUrl":null,"url":null,"abstract":"This research explores the impact of social media sentiments on predicting Bitcoin prices using machine learning models, integrating on-chain data, and applying a Multi Modal Fusion Model. Historical crypto market, on-chain, and Twitter data from 2014 to 2022 were used to train models including K-Nearest Neighbors, Logistic Regression, Gaussian Naive Bayes, Support Vector Machine, Extreme Gradient Boosting, and Multi Modal Fusion. Performance was compared with and without Twitter sentiment data which was analysed using the Twitter-roBERTa and VADAR models. Inclusion of sentiment data enhanced model performance, with Twitter-roBERTa-based models achieving an average accuracy score of 0.81. The best performing model was an optimised Multi Modal Fusion model using Twitter-roBERTa, with an accuracy score of 0.90. This research underscores the value of integrating social media sentiment analysis and onchain data in financial forecasting, providing a robust tool for informed decision-making in cryptocurrency trading.","PeriodicalId":74528,"journal":{"name":"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/mlaij.2023.10301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research explores the impact of social media sentiments on predicting Bitcoin prices using machine learning models, integrating on-chain data, and applying a Multi Modal Fusion Model. Historical crypto market, on-chain, and Twitter data from 2014 to 2022 were used to train models including K-Nearest Neighbors, Logistic Regression, Gaussian Naive Bayes, Support Vector Machine, Extreme Gradient Boosting, and Multi Modal Fusion. Performance was compared with and without Twitter sentiment data which was analysed using the Twitter-roBERTa and VADAR models. Inclusion of sentiment data enhanced model performance, with Twitter-roBERTa-based models achieving an average accuracy score of 0.81. The best performing model was an optimised Multi Modal Fusion model using Twitter-roBERTa, with an accuracy score of 0.90. This research underscores the value of integrating social media sentiment analysis and onchain data in financial forecasting, providing a robust tool for informed decision-making in cryptocurrency trading.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
情绪驱动的加密货币价格预测:利用历史数据和社交媒体情绪分析的机器学习方法
本研究探讨了社交媒体情绪对使用机器学习模型、整合链上数据和应用多模态融合模型预测比特币价格的影响。使用2014年至2022年的历史加密市场、链上和Twitter数据来训练模型,包括k近邻、逻辑回归、高斯朴素贝叶斯、支持向量机、极端梯度增强和多模态融合。使用Twitter- roberta和VADAR模型分析了Twitter情绪数据,并对有无Twitter情绪数据进行了比较。情感数据的加入提高了模型的性能,基于twitter - roberta的模型的平均准确率得分为0.81。表现最好的模型是使用Twitter-roBERTa优化的Multi - Modal Fusion模型,准确率得分为0.90。这项研究强调了在财务预测中整合社交媒体情绪分析和链上数据的价值,为加密货币交易中的明智决策提供了一个强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sentiment-Driven Cryptocurrency Price Prediction: A Machine Learning Approach Utilizing Historical Data and Social Media Sentiment Analysis Face Mask Detection Model Using Convolutional Neural Network Breast Tumor Detection Using Efficient Machine Learning and Deep Learning Techniques Context-free Self-Conditioned GAN for Trajectory Forecasting Multiple Imputation via Generative Adversarial Network for High-dimensional Blockwise Missing Value Problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1