Optimal Coverage Path Planning in a Wireless Sensor Network for Intelligent Transportation System

Saureng Kumar, S C Sharma
{"title":"Optimal Coverage Path Planning in a Wireless Sensor Network for Intelligent Transportation System","authors":"Saureng Kumar, S C Sharma","doi":"10.5121/ijcnc.2023.15504","DOIUrl":null,"url":null,"abstract":"With the enhancement of the intelligent and communication technology, an intelligent transportation plays a vital role to facilitate an essential service to many people, allowing them to travel quickly and conveniently from place to place. Wireless sensor networks (WSNs) are well-known for their ability to detect physical significant barriers due to their diverse movement, self-organizing capabilities, and the integration of this mobile node on the intelligent transportation system to gather data in WSN contexts is becoming more and more popular as these vehicles proliferate. Although these mobile devices might enhance network performance, however it is difficult to design a suitable transportation path with the limited energy resources with network connectivity. To solve this problem, we have proposed a novel itinerary planning schema data gatherer (IPS-DG) model. Furthermore, we use the path planning module (PPM) which finds the transportation path to travel the shortest distance. We have compared our results under different aspect such as life span, energy consumption, and path length with Low Energy Adaptive Clustering Hierarchy (LEACH), Multi-Hop Weighted Revenue (MWR), Single-Hop Data Gathering Procedure (SHDGP). Our model outperforms in terms of energy usage, shortest path, and longest life span of with LEACH, MWR, SHDGP routing protocols.","PeriodicalId":37554,"journal":{"name":"International Journal of Computer Networks and Communications","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Networks and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijcnc.2023.15504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

With the enhancement of the intelligent and communication technology, an intelligent transportation plays a vital role to facilitate an essential service to many people, allowing them to travel quickly and conveniently from place to place. Wireless sensor networks (WSNs) are well-known for their ability to detect physical significant barriers due to their diverse movement, self-organizing capabilities, and the integration of this mobile node on the intelligent transportation system to gather data in WSN contexts is becoming more and more popular as these vehicles proliferate. Although these mobile devices might enhance network performance, however it is difficult to design a suitable transportation path with the limited energy resources with network connectivity. To solve this problem, we have proposed a novel itinerary planning schema data gatherer (IPS-DG) model. Furthermore, we use the path planning module (PPM) which finds the transportation path to travel the shortest distance. We have compared our results under different aspect such as life span, energy consumption, and path length with Low Energy Adaptive Clustering Hierarchy (LEACH), Multi-Hop Weighted Revenue (MWR), Single-Hop Data Gathering Procedure (SHDGP). Our model outperforms in terms of energy usage, shortest path, and longest life span of with LEACH, MWR, SHDGP routing protocols.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能交通系统无线传感器网络最优覆盖路径规划
随着智能和通信技术的提高,智能交通对许多人的基本服务起着至关重要的作用,使他们能够快速方便地从一个地方到另一个地方。无线传感器网络(WSN)以其检测物理障碍的能力而闻名,这是由于其多样化的运动,自组织能力,并且随着这些车辆的激增,将这种移动节点集成到智能交通系统中以收集WSN环境中的数据正变得越来越受欢迎。虽然这些移动设备可能会提高网络性能,但由于网络连接的能源有限,很难设计出合适的传输路径。为了解决这一问题,我们提出了一种新的行程规划模式数据收集器(IPS-DG)模型。此外,我们还使用路径规划模块(PPM)来寻找最短距离的运输路径。我们比较了低能量自适应聚类层次(LEACH)、多跳加权收益(MWR)、单跳数据收集过程(SHDGP)在寿命、能量消耗和路径长度等不同方面的结果。我们的模型在能耗、最短路径和最长寿命方面优于LEACH、MWR、SHDGP路由协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computer Networks and Communications
International Journal of Computer Networks and Communications Computer Science-Computer Networks and Communications
CiteScore
1.60
自引率
0.00%
发文量
46
期刊介绍: The International Journal of Computer Networks & Communications (IJCNC) is a bi monthly open access peer-reviewed journal that publishes articles which contribute new results in all areas of Computer Networks & Communications.The journal focuses on all technical and practical aspects of Computer Networks & data Communications. The goal of this journal is to bring together researchers and practitioners from academia and industry to focus on advanced networking concepts and establishing new collaborations in these areas. Authors are solicited to contribute to this journal by submitting articles that illustrate research results, projects, surveying works and industrial experiences that describe significant advances in the Computer Networks & Communications.
期刊最新文献
Analysis of System Capacity and Spectral Efficiency of Fixed-Grid Network Multi Objective Salp Swarm based Energy Efficient Routing Protocol for Heterogeneous Wireless Networks A Privacy-Aware Tracking and Tracing System A Survey on CDN Vulnerability to DoS Attacks Energy-Efficient Improved Optimal K-Means: Dynamic Cluster Head Selection based on Delaying the First Node Death in MWSN-IoT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1