Forecasting Large Realized Covariance Matrices: The Benefits of Factor Models and Shrinkage

IF 1.8 3区 经济学 Q2 BUSINESS, FINANCE Journal of Financial Econometrics Pub Date : 2023-05-11 DOI:10.1093/jjfinec/nbad013
Rafael P Alves, Diego S de Brito, Marcelo C Medeiros, Ruy M Ribeiro
{"title":"Forecasting Large Realized Covariance Matrices: The Benefits of Factor Models and Shrinkage","authors":"Rafael P Alves, Diego S de Brito, Marcelo C Medeiros, Ruy M Ribeiro","doi":"10.1093/jjfinec/nbad013","DOIUrl":null,"url":null,"abstract":"Abstract We propose a model to forecast large realized covariance matrices of returns, applying it to the constituents of the S&P 500 daily. To address the curse of dimensionality, we decompose the return covariance matrix using standard firm-level factors (e.g., size, value, and profitability) and use sectoral restrictions in the residual covariance matrix. This restricted model is then estimated using vector heterogeneous autoregressive models with the least absolute shrinkage and selection operator. Our methodology improves forecasting precision relative to standard benchmarks and leads to better estimates of minimum variance portfolios.","PeriodicalId":47596,"journal":{"name":"Journal of Financial Econometrics","volume":"55 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jjfinec/nbad013","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We propose a model to forecast large realized covariance matrices of returns, applying it to the constituents of the S&P 500 daily. To address the curse of dimensionality, we decompose the return covariance matrix using standard firm-level factors (e.g., size, value, and profitability) and use sectoral restrictions in the residual covariance matrix. This restricted model is then estimated using vector heterogeneous autoregressive models with the least absolute shrinkage and selection operator. Our methodology improves forecasting precision relative to standard benchmarks and leads to better estimates of minimum variance portfolios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测大已实现协方差矩阵:因子模型和收缩的好处
摘要本文提出了一个预测收益的大已实现协方差矩阵的模型,并将其应用于标准普尔500指数成分股。为了解决维度的诅咒,我们使用标准的公司层面因素(例如,规模,价值和盈利能力)分解回报协方差矩阵,并在残差协方差矩阵中使用部门限制。然后使用具有最小绝对收缩和选择算子的矢量异构自回归模型估计该受限模型。我们的方法提高了相对于标准基准的预测精度,并导致对最小方差组合的更好估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
8.00%
发文量
39
期刊介绍: "The Journal of Financial Econometrics is well situated to become the premier journal in its field. It has started with an excellent first year and I expect many more."
期刊最新文献
Large-Dimensional Portfolio Selection with a High-Frequency-Based Dynamic Factor Model Exploiting Intraday Decompositions in Realized Volatility Forecasting: A Forecast Reconciliation Approach A Structural Break in the Aggregate Earnings–Returns Relation Large Sample Estimators of the Stochastic Discount Factor Jump Clustering, Information Flows, and Stock Price Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1