Large Sample Estimators of the Stochastic Discount Factor

IF 1.8 3区 经济学 Q2 BUSINESS, FINANCE Journal of Financial Econometrics Pub Date : 2024-05-22 DOI:10.1093/jjfinec/nbae012
Soohun Kim, Robert A Korajczyk
{"title":"Large Sample Estimators of the Stochastic Discount Factor","authors":"Soohun Kim, Robert A Korajczyk","doi":"10.1093/jjfinec/nbae012","DOIUrl":null,"url":null,"abstract":"We propose estimators of the stochastic discount factor using large cross-sections of individual stocks. We introduce a short time-block structure on a large N, T panel to exploit unbalanced panels of individual stock returns and suggest a novel bias correction to achieve the consistency of our estimators. Our estimators can accommodate pre-specified traded and nontraded factors, and latent factors. The estimators perform well in simulations. We apply our estimators to return data for U.S. individual stocks over a 50-year sample period and identify those factors in popular asset pricing models that command significant premia. A number of proposed nontraded factors have insignificant risk premia. Contrary to many studies, we find the market factor has a significant premium, as do profitability, value, and momentum factors.","PeriodicalId":47596,"journal":{"name":"Journal of Financial Econometrics","volume":"10 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/jjfinec/nbae012","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We propose estimators of the stochastic discount factor using large cross-sections of individual stocks. We introduce a short time-block structure on a large N, T panel to exploit unbalanced panels of individual stock returns and suggest a novel bias correction to achieve the consistency of our estimators. Our estimators can accommodate pre-specified traded and nontraded factors, and latent factors. The estimators perform well in simulations. We apply our estimators to return data for U.S. individual stocks over a 50-year sample period and identify those factors in popular asset pricing models that command significant premia. A number of proposed nontraded factors have insignificant risk premia. Contrary to many studies, we find the market factor has a significant premium, as do profitability, value, and momentum factors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机贴现因子的大样本估算器
我们利用个股的大截面提出了随机贴现因子的估计值。我们在一个 N,T 的大面板上引入了一个短时块结构,以利用个股收益的非平衡面板,并提出了一种新的偏差修正方法,以实现我们的估计值的一致性。我们的估计器可以容纳预先指定的交易和非交易因子以及潜在因子。估计器在模拟中表现良好。我们将我们的估计器应用于美国个股 50 年样本期的回报数据,并在流行的资产定价模型中识别出那些具有显著溢价的因子。一些拟议的非交易因子的风险溢价并不显著。与许多研究相反,我们发现市场因子具有显著的溢价,盈利能力、价值和动量因子也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
8.00%
发文量
39
期刊介绍: "The Journal of Financial Econometrics is well situated to become the premier journal in its field. It has started with an excellent first year and I expect many more."
期刊最新文献
Large-Dimensional Portfolio Selection with a High-Frequency-Based Dynamic Factor Model Exploiting Intraday Decompositions in Realized Volatility Forecasting: A Forecast Reconciliation Approach A Structural Break in the Aggregate Earnings–Returns Relation Large Sample Estimators of the Stochastic Discount Factor Jump Clustering, Information Flows, and Stock Price Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1