{"title":"Numerical investigation on the high-velocity impact resistance of textile reinforced composite mesh designs inspired by spider web","authors":"Prashant Rawat, Sai Liu, None Mahesh, Ramesh Kumar, Nand Kishore Singh","doi":"10.1080/00405000.2023.2276863","DOIUrl":null,"url":null,"abstract":"AbstractThe need for thin and highly deformable textile reinforcements is constant in sectors like thin composites, catching nets, and complex construction designs (like dome-shape). The conventional rectangular-patterned meshed wovens are used in thin composite structures as reinforcement at the commercial level. These woven textiles are bidirectional and exhibit approximately the same strength along both axes. However, these conventional rectangular-patterned mesh designs show poor impact stress distribution capacity. Interestingly, very thin and fine mesh designs are available in nature. One such example is the spider web structure. These structures have evolved with time and optimised their mesh pattern design for better impact damage resistance and load transfer. In this study, the basalt fibre reinforced mortar textile composites are considered for the investigation due to their growing interest in civil and construction applications. To demonstrate how the mesh geometry in textiles significantly influences the stress transfer, energy absorption, and deformation of reinforcements under various impact situations, three different geometries, (a) square shape mesh, (b) diamond-shaped mesh, and (c) bio-inspired spider web mesh, are modelled and meshed based on the reference geometry’s meshing pattern and dimensions. The results of numerical simulations show that a meshed reinforcement design inspired by spider-orb-web has improved mechanical features compared to conventional square and diamond shape mesh designs under high velocity impact loading.Keywords: Basalt wovenbio-inspired designspider-orb-webhigh velocity impact Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingResearch reported herein was supported by the National Natural Science Foundation of China (No. 52208266), Natural Science Foundation of Shandong Province (No. ZR2021QE068) and China Postdoctoral Science Foundation (No. 2023M732575).","PeriodicalId":49978,"journal":{"name":"Journal of the Textile Institute","volume":"289 6","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Textile Institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00405000.2023.2276863","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractThe need for thin and highly deformable textile reinforcements is constant in sectors like thin composites, catching nets, and complex construction designs (like dome-shape). The conventional rectangular-patterned meshed wovens are used in thin composite structures as reinforcement at the commercial level. These woven textiles are bidirectional and exhibit approximately the same strength along both axes. However, these conventional rectangular-patterned mesh designs show poor impact stress distribution capacity. Interestingly, very thin and fine mesh designs are available in nature. One such example is the spider web structure. These structures have evolved with time and optimised their mesh pattern design for better impact damage resistance and load transfer. In this study, the basalt fibre reinforced mortar textile composites are considered for the investigation due to their growing interest in civil and construction applications. To demonstrate how the mesh geometry in textiles significantly influences the stress transfer, energy absorption, and deformation of reinforcements under various impact situations, three different geometries, (a) square shape mesh, (b) diamond-shaped mesh, and (c) bio-inspired spider web mesh, are modelled and meshed based on the reference geometry’s meshing pattern and dimensions. The results of numerical simulations show that a meshed reinforcement design inspired by spider-orb-web has improved mechanical features compared to conventional square and diamond shape mesh designs under high velocity impact loading.Keywords: Basalt wovenbio-inspired designspider-orb-webhigh velocity impact Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingResearch reported herein was supported by the National Natural Science Foundation of China (No. 52208266), Natural Science Foundation of Shandong Province (No. ZR2021QE068) and China Postdoctoral Science Foundation (No. 2023M732575).
期刊介绍:
The Journal of The Textile Institute welcomes papers concerning research and innovation, reflecting the professional interests of the Textile Institute in science, engineering, economics, management and design related to the textile industry and the use of fibres in consumer and engineering applications. Papers may encompass anything in the range of textile activities, from fibre production through textile processes and machines, to the design, marketing and use of products. Papers may also report fundamental theoretical or experimental investigations, including materials science topics in nanotechnology and smart materials, practical or commercial industrial studies and may relate to technical, economic, aesthetic, social or historical aspects of textiles and the textile industry.
All published research articles in The Journal of The Textile Institute have undergone rigorous peer review, based on initial editor screening and anonymized refereeing by two expert referees.