Tamás Varga, Dóra Szejke, Zoltán Nemes, A J Timothy Jull, Mihály Molnár
{"title":"THE POTENTIAL OF BIOGENIC FRACTION ANALYSIS BY RADIOCARBON IN FOOD, DRUG, AND COSMETIC PRODUCTS","authors":"Tamás Varga, Dóra Szejke, Zoltán Nemes, A J Timothy Jull, Mihály Molnár","doi":"10.1017/rdc.2023.98","DOIUrl":null,"url":null,"abstract":"ABSTRACT Biobased content analysis is a well-established, analytically independent, standardized method to determine the biobased content of fuels and plastics, based on differences of the specific radiocarbon ( 14 C) activity of fossil and recent biogenic compounds. This biogenic content analysis can be useful for the producers as a quality assurance tool, for the customers as feedback about the truly biobased products and for the control organizations as an independent analytical tool to prove the biological origin. More than 100 commercially available foods, cosmetics, and drug samples have been used for biobased carbon content analysis by accelerator mass spectrometry (AMS) 14 C measurement to demonstrate the potential of this technique. Our results show that this measurement technique is a unique tool for the determination of biocontent in foodstuff and medical products. Most of the tested materials were nearly or completely biobased (≥ 98 pMC), and no completely fossil-based final product was detected. The lowest biogenic compound was measured in a vanilla aroma flavor. In 45 of the 102 samples selected a wide range (2–98%) presented fossil-based carbon content. The method can be applied for monitoring raw materials and final products for biobased content in the industry and consumer protection as well.","PeriodicalId":21020,"journal":{"name":"Radiocarbon","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiocarbon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/rdc.2023.98","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Biobased content analysis is a well-established, analytically independent, standardized method to determine the biobased content of fuels and plastics, based on differences of the specific radiocarbon ( 14 C) activity of fossil and recent biogenic compounds. This biogenic content analysis can be useful for the producers as a quality assurance tool, for the customers as feedback about the truly biobased products and for the control organizations as an independent analytical tool to prove the biological origin. More than 100 commercially available foods, cosmetics, and drug samples have been used for biobased carbon content analysis by accelerator mass spectrometry (AMS) 14 C measurement to demonstrate the potential of this technique. Our results show that this measurement technique is a unique tool for the determination of biocontent in foodstuff and medical products. Most of the tested materials were nearly or completely biobased (≥ 98 pMC), and no completely fossil-based final product was detected. The lowest biogenic compound was measured in a vanilla aroma flavor. In 45 of the 102 samples selected a wide range (2–98%) presented fossil-based carbon content. The method can be applied for monitoring raw materials and final products for biobased content in the industry and consumer protection as well.
期刊介绍:
Radiocarbon serves as the leading international journal for technical and interpretive articles, date lists, and advancements in 14C and other radioisotopes relevant to archaeological, geophysical, oceanographic, and related dating methods. Established in 1959, it has published numerous seminal works and hosts the triennial International Radiocarbon Conference proceedings. The journal also features occasional special issues. Submissions encompass regular articles such as research reports, technical descriptions, and date lists, along with comments, letters to the editor, book reviews, and laboratory lists.