An Improved Time-Domain Inverse Technique for Localization and Quantification of Rotating Sound Sources

IF 4.2 2区 工程技术 Q1 Engineering Chinese Journal of Mechanical Engineering Pub Date : 2023-11-07 DOI:10.1186/s10033-023-00958-7
Xiaozheng Zhang, Yinlong Li, Yongbin Zhang, Chuanxing Bi, Jinghao Li, Liang Xu
{"title":"An Improved Time-Domain Inverse Technique for Localization and Quantification of Rotating Sound Sources","authors":"Xiaozheng Zhang, Yinlong Li, Yongbin Zhang, Chuanxing Bi, Jinghao Li, Liang Xu","doi":"10.1186/s10033-023-00958-7","DOIUrl":null,"url":null,"abstract":"Abstract The time-domain inverse technique based on the time-domain rotating equivalent source method has been proposed to localize and quantify rotating sound sources. However, this technique encounters two problems to be addressed: one is the time-consuming process of solving the transcendental equation at each time step, and the other is the difficulty of controlling the instability problem due to the time-varying transfer matrix. In view of that, an improved technique is proposed in this paper to resolve these two problems. In the improved technique, a de-Dopplerization method in the time-domain rotating reference frame is first applied to eliminate the Doppler effect caused by the source rotation in the measured pressure signals, and then the restored pressure signals without the Doppler effect are used as the inputs of the time-domain stationary equivalent source method to locate and quantify sound sources. Compared with the original technique, the improved technique can avoid solving the transcendental equation at each time step, and facilitate the treatment of the instability problem because the transfer matrix does not change with time. Numerical simulation and experimental results show that the improved technique can eliminate the Doppler effect effectively, and then localize and quantify the rotating nonstationary or broadband sources accurately. The results also demonstrate that the improved technique can guarantee a more stable reconstruction and compute more efficiently than the original one.","PeriodicalId":10115,"journal":{"name":"Chinese Journal of Mechanical Engineering","volume":"54 7","pages":"0"},"PeriodicalIF":4.2000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s10033-023-00958-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The time-domain inverse technique based on the time-domain rotating equivalent source method has been proposed to localize and quantify rotating sound sources. However, this technique encounters two problems to be addressed: one is the time-consuming process of solving the transcendental equation at each time step, and the other is the difficulty of controlling the instability problem due to the time-varying transfer matrix. In view of that, an improved technique is proposed in this paper to resolve these two problems. In the improved technique, a de-Dopplerization method in the time-domain rotating reference frame is first applied to eliminate the Doppler effect caused by the source rotation in the measured pressure signals, and then the restored pressure signals without the Doppler effect are used as the inputs of the time-domain stationary equivalent source method to locate and quantify sound sources. Compared with the original technique, the improved technique can avoid solving the transcendental equation at each time step, and facilitate the treatment of the instability problem because the transfer matrix does not change with time. Numerical simulation and experimental results show that the improved technique can eliminate the Doppler effect effectively, and then localize and quantify the rotating nonstationary or broadband sources accurately. The results also demonstrate that the improved technique can guarantee a more stable reconstruction and compute more efficiently than the original one.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的旋转声源定位与量化时域反演技术
提出了一种基于时域旋转等效源法的时域逆技术,用于旋转声源的定位和量化。然而,该技术遇到了两个需要解决的问题:一是在每个时间步上求解超越方程的耗时过程,二是由于传递矩阵时变导致的不稳定性问题难以控制。鉴于此,本文提出了一种改进技术来解决这两个问题。改进后的方法首先在时域旋转参考系中采用去多普勒方法消除被测压力信号中声源旋转引起的多普勒效应,然后将恢复后的无多普勒效应的压力信号作为时域平稳等效声源法的输入,对声源进行定位和量化。与原方法相比,改进后的方法可以避免在每个时间步都求解超越方程,并且由于传递矩阵不随时间变化,便于处理不稳定问题。数值模拟和实验结果表明,改进后的方法可以有效地消除多普勒效应,从而精确地定位和量化旋转非平稳源或宽带源。结果还表明,改进后的方法可以保证比原方法更稳定的重建和更高效的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
4.80%
发文量
3097
审稿时长
8 months
期刊介绍: Chinese Journal of Mechanical Engineering (CJME) was launched in 1988. It is a peer-reviewed journal under the govern of China Association for Science and Technology (CAST) and sponsored by Chinese Mechanical Engineering Society (CMES). The publishing scopes of CJME follow with: Mechanism and Robotics, including but not limited to -- Innovative Mechanism Design -- Mechanical Transmission -- Robot Structure Design and Control -- Applications for Robotics (e.g., Industrial Robot, Medical Robot, Service Robot…) -- Tri-Co Robotics Intelligent Manufacturing Technology, including but not limited to -- Innovative Industrial Design -- Intelligent Machining Process -- Artificial Intelligence -- Micro- and Nano-manufacturing -- Material Increasing Manufacturing -- Intelligent Monitoring Technology -- Machine Fault Diagnostics and Prognostics Advanced Transportation Equipment, including but not limited to -- New Energy Vehicle Technology -- Unmanned Vehicle -- Advanced Rail Transportation -- Intelligent Transport System Ocean Engineering Equipment, including but not limited to --Equipment for Deep-sea Exploration -- Autonomous Underwater Vehicle Smart Material, including but not limited to --Special Metal Functional Materials --Advanced Composite Materials --Material Forming Technology.
期刊最新文献
Motion Planning for Autonomous Driving with Real Traffic Data Validation Multi-Objective Optimization of VBHF in Deep Drawing Based on the Improved QO-Jaya Algorithm Nonlinear Impact Damage Evolution of Charpy Type and Analysis of Its Key Influencing Factors A Dual-Task Learning Approach for Bearing Anomaly Detection and State Evaluation of Safe Region Optimization of Fixture Number in Large Thin-Walled Parts Assembly Based on IPSO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1