Orbital Expansion Variational Quantum Eigensolver

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Science and Technology Pub Date : 2023-09-27 DOI:10.1088/2058-9565/acf9c7
Yusen Wu, Zigeng Huang, Jinzhao Sun, Xiao Yuan, Jingbo B Wang, Dingshun Lv
{"title":"Orbital Expansion Variational Quantum Eigensolver","authors":"Yusen Wu, Zigeng Huang, Jinzhao Sun, Xiao Yuan, Jingbo B Wang, Dingshun Lv","doi":"10.1088/2058-9565/acf9c7","DOIUrl":null,"url":null,"abstract":"Abstract Variational quantum eigensolver (VQE) has emerged as a promising method for investigating ground state properties in quantum chemistry, materials science, and condensed matter physics. However, the conventional VQE method generally lacks systematic improvement and convergence guarantees, particularly when dealing with strongly correlated systems. In light of these challenges, we present a novel framework called orbital expansion VQE (OE-VQE) to address these limitations. The key idea is to devise an efficient convergence path by utilizing shallower quantum circuits, starting from a highly compact active space and gradually expanding it until convergence to the ground state is achieved. To validate the effectiveness of the OE-VQE framework, we conducted benchmark simulations on several small yet representative molecules, including the <?CDATA $\\mathrm{H}_{6}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"normal\">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>6</mml:mn> </mml:mrow> </mml:msub> </mml:math> chain, <?CDATA $\\mathrm{H}_{10}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"normal\">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> </mml:msub> </mml:math> ring and <?CDATA $\\mathrm{N}_2$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"normal\">N</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> </mml:math> . The simulation results demonstrate that our proposed convergence paths significantly enhance the performance of conventional VQE. Overall, our work sheds valuable insight into the simulation of molecules based on shallow quantum circuits, offering a promising avenue for advancing the efficiency and accuracy of VQE approaches in tackling complex molecular systems.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"71 1","pages":"0"},"PeriodicalIF":5.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2058-9565/acf9c7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Variational quantum eigensolver (VQE) has emerged as a promising method for investigating ground state properties in quantum chemistry, materials science, and condensed matter physics. However, the conventional VQE method generally lacks systematic improvement and convergence guarantees, particularly when dealing with strongly correlated systems. In light of these challenges, we present a novel framework called orbital expansion VQE (OE-VQE) to address these limitations. The key idea is to devise an efficient convergence path by utilizing shallower quantum circuits, starting from a highly compact active space and gradually expanding it until convergence to the ground state is achieved. To validate the effectiveness of the OE-VQE framework, we conducted benchmark simulations on several small yet representative molecules, including the H 6 chain, H 10 ring and N 2 . The simulation results demonstrate that our proposed convergence paths significantly enhance the performance of conventional VQE. Overall, our work sheds valuable insight into the simulation of molecules based on shallow quantum circuits, offering a promising avenue for advancing the efficiency and accuracy of VQE approaches in tackling complex molecular systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轨道展开变分量子本征求解器
变分量子本征求解器(VQE)已经成为研究量子化学、材料科学和凝聚态物理中基态性质的一种很有前途的方法。然而,传统的VQE方法普遍缺乏系统性改进和收敛性保证,特别是在处理强相关系统时。鉴于这些挑战,我们提出了一种称为轨道扩展VQE (OE-VQE)的新框架来解决这些限制。关键思想是利用较浅的量子电路设计一个有效的收敛路径,从一个高度紧凑的有源空间开始,逐渐扩大它,直到收敛到基态。为了验证OE-VQE框架的有效性,我们对几个小而有代表性的分子进行了基准模拟,包括h6链、h10环和n2。仿真结果表明,我们提出的收敛路径显著提高了传统VQE的性能。总的来说,我们的工作为基于浅量子电路的分子模拟提供了有价值的见解,为提高VQE方法在处理复杂分子系统中的效率和准确性提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
期刊最新文献
Near-optimal quantum kernel principal component analysis Bayesian optimization for state engineering of quantum gases Ramsey interferometry of nuclear spins in diamond using stimulated Raman adiabatic passage Reducing measurement costs by recycling the Hessian in adaptive variational quantum algorithms Permutation-equivariant quantum convolutional neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1