Gabriel Müller, Víctor J Martínez-Lahuerta, Ivan Sekulic, Sven Burger, Philipp-Immanuel Schneider and Naceur Gaaloul
{"title":"Bayesian optimization for state engineering of quantum gases","authors":"Gabriel Müller, Víctor J Martínez-Lahuerta, Ivan Sekulic, Sven Burger, Philipp-Immanuel Schneider and Naceur Gaaloul","doi":"10.1088/2058-9565/ad9050","DOIUrl":null,"url":null,"abstract":"State engineering of quantum objects is a central requirement for precision sensing and quantum computing implementations. When the quantum dynamics can be described by analytical solutions or simple approximation models, optimal state preparation protocols have been theoretically proposed and experimentally realized. For more complex systems such as interacting quantum gases, simplifying assumptions do not apply anymore and the optimization techniques become computationally impractical. Here, we propose Bayesian optimization based on multi-output Gaussian processes to learn the physical properties of a Bose–Einstein condensate within few simulations only. We evaluate its performance on an optimization study case of diabatically transporting the quantum gas while keeping it in its ground state. Within a few hundred executions, we reach a competitive performance to other protocols. While restricting this benchmark to the well known Thomas–Fermi approximation for straightforward comparisons, we expect a similar performance when employing more complex theoretical models, which would be computationally more challenging, rendering standard optimal control theory protocols impractical. This paves the way for efficient state engineering of complex quantum systems including mixtures of interacting gases or cold molecules.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"11 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad9050","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
State engineering of quantum objects is a central requirement for precision sensing and quantum computing implementations. When the quantum dynamics can be described by analytical solutions or simple approximation models, optimal state preparation protocols have been theoretically proposed and experimentally realized. For more complex systems such as interacting quantum gases, simplifying assumptions do not apply anymore and the optimization techniques become computationally impractical. Here, we propose Bayesian optimization based on multi-output Gaussian processes to learn the physical properties of a Bose–Einstein condensate within few simulations only. We evaluate its performance on an optimization study case of diabatically transporting the quantum gas while keeping it in its ground state. Within a few hundred executions, we reach a competitive performance to other protocols. While restricting this benchmark to the well known Thomas–Fermi approximation for straightforward comparisons, we expect a similar performance when employing more complex theoretical models, which would be computationally more challenging, rendering standard optimal control theory protocols impractical. This paves the way for efficient state engineering of complex quantum systems including mixtures of interacting gases or cold molecules.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.