{"title":"A novel analytical solution for ponded infiltration with consideration of a developing saturated zone","authors":"DongHao Ma, SiCong Wu, ZhiPeng Liu, JiaBao Zhang","doi":"10.1029/2022wr034228","DOIUrl":null,"url":null,"abstract":"Abstract Ponding at the soil surface exerts profound impacts on infiltration. However, the effects of ponding depth on infiltration, especially the development of a saturated zone below the soil surface, have yet to be considered in present infiltration models. A new general Green‐Ampt model solution (GAMS) was derived for a one‐dimensional vertical infiltration problem under a uniform initial moisture distribution with ponding on its surface. An expression was included in the new solution for simulating the saturated layer developed below the soil surface as long as the pressure head at the surface is sufficiently high to saturate the soil. The GAMS simulates the infiltration processes closer to the numerical solution by HYDRUS‐1D than the traditional and the recently improved Green‐Ampt model. Moreover, an inversion method to improve the estimates of soil hydraulic parameters from one‐dimensional vertical infiltration experiments that is based on the GAMS was suggested. The effect of ponding depth ( h p ), initial soil moisture content, soil texture, and hydraulic soil properties (saturated hydraulic conductivity K s , water‐entry suction h d and shape coefficient n of soil water retention curve) in the saturated zone was also evaluated. The results indicate that the saturated zone length increased at a comparable rate with the unsaturated wetted zone length during infiltration. Generally, a larger saturated zone was found for soils with higher initial soil moisture contents, coarser texture, higher K s values, greater n , and lower − h d . Our findings reveal that including the saturated zone in the infiltration model yields a better estimate of the soil hydraulic parameters. The proposed GAMS model can improve irrigation design and rainfall‐runoff simulations.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"45 1","pages":"0"},"PeriodicalIF":4.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2022wr034228","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Ponding at the soil surface exerts profound impacts on infiltration. However, the effects of ponding depth on infiltration, especially the development of a saturated zone below the soil surface, have yet to be considered in present infiltration models. A new general Green‐Ampt model solution (GAMS) was derived for a one‐dimensional vertical infiltration problem under a uniform initial moisture distribution with ponding on its surface. An expression was included in the new solution for simulating the saturated layer developed below the soil surface as long as the pressure head at the surface is sufficiently high to saturate the soil. The GAMS simulates the infiltration processes closer to the numerical solution by HYDRUS‐1D than the traditional and the recently improved Green‐Ampt model. Moreover, an inversion method to improve the estimates of soil hydraulic parameters from one‐dimensional vertical infiltration experiments that is based on the GAMS was suggested. The effect of ponding depth ( h p ), initial soil moisture content, soil texture, and hydraulic soil properties (saturated hydraulic conductivity K s , water‐entry suction h d and shape coefficient n of soil water retention curve) in the saturated zone was also evaluated. The results indicate that the saturated zone length increased at a comparable rate with the unsaturated wetted zone length during infiltration. Generally, a larger saturated zone was found for soils with higher initial soil moisture contents, coarser texture, higher K s values, greater n , and lower − h d . Our findings reveal that including the saturated zone in the infiltration model yields a better estimate of the soil hydraulic parameters. The proposed GAMS model can improve irrigation design and rainfall‐runoff simulations.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.