Instantaneous Kinematics and Free-from-Singularity Workspace of 3-XXRRU Parallel Manipulators

IF 2.9 Q2 ROBOTICS Robotics Pub Date : 2023-10-05 DOI:10.3390/robotics12050138
Henrique Simas, Raffaele Di Di Gregorio, Roberto Simoni
{"title":"Instantaneous Kinematics and Free-from-Singularity Workspace of 3-XXRRU Parallel Manipulators","authors":"Henrique Simas, Raffaele Di Di Gregorio, Roberto Simoni","doi":"10.3390/robotics12050138","DOIUrl":null,"url":null,"abstract":"3-XXRRU parallel manipulators (PMs) constitute a family of six-degrees-of-freedom (DOF) PMs with three limbs of type XXRRU, where R and U stand for revolute pair and universal joint, respectively, and XX indicates any actuated two-DOF mechanism that moves the axis of the first R-pair. The members of this family share the fact that they all become particular 3-RRU structures when the actuators are locked. By exploiting this feature, the present paper proposes a general approach, which holds for all the members of this family, to analyze the instantaneous kinematics, workspace, and kinetostatic performances of any 3-XXRRU PM. The results of this study include the identification of singularity conditions without reference to a specific actuation system, the proposal of two specific dimensionless performance indices ranging from 0 to 1, the determination of the optimal actuation system, and the demonstration that 3-XXRRU PMs, when appropriately sized and actuated, possess a broad singularity-free workspace that is also fully isotropic. These findings hold significance in the context of the dimensional synthesis and control of 3-XXRRU PMs. Moreover, when combined with the closed-form solutions for their positional analysis, as demonstrated in a previous publication by the same authors, 3-XXRRU PMs emerge as intriguing alternatives to other six-DOF PMs. The efficacy of the proposed approach is further illustrated through a case study.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"67 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/robotics12050138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

3-XXRRU parallel manipulators (PMs) constitute a family of six-degrees-of-freedom (DOF) PMs with three limbs of type XXRRU, where R and U stand for revolute pair and universal joint, respectively, and XX indicates any actuated two-DOF mechanism that moves the axis of the first R-pair. The members of this family share the fact that they all become particular 3-RRU structures when the actuators are locked. By exploiting this feature, the present paper proposes a general approach, which holds for all the members of this family, to analyze the instantaneous kinematics, workspace, and kinetostatic performances of any 3-XXRRU PM. The results of this study include the identification of singularity conditions without reference to a specific actuation system, the proposal of two specific dimensionless performance indices ranging from 0 to 1, the determination of the optimal actuation system, and the demonstration that 3-XXRRU PMs, when appropriately sized and actuated, possess a broad singularity-free workspace that is also fully isotropic. These findings hold significance in the context of the dimensional synthesis and control of 3-XXRRU PMs. Moreover, when combined with the closed-form solutions for their positional analysis, as demonstrated in a previous publication by the same authors, 3-XXRRU PMs emerge as intriguing alternatives to other six-DOF PMs. The efficacy of the proposed approach is further illustrated through a case study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3-XXRRU并联机构瞬时运动学及无奇异工作空间
3-XXRRU并联机器人构成了一个六自由度并联机器人家族,其中R和U分别代表转动副和万向节,XX表示任何驱动两自由度机构,移动第一个R副的轴。当执行器被锁定时,这个家族的成员都变成了特殊的3-RRU结构。通过利用这一特征,本文提出了一种通用方法,适用于该家族的所有成员,以分析任何3-XXRRU PM的瞬时运动学,工作空间和静力学性能。本研究的结果包括在不参考特定驱动系统的情况下识别奇异条件,提出两个特定的无量纲性能指标,范围为0到1,确定最佳驱动系统,并证明3-XXRRU pm在适当的尺寸和驱动下具有广泛的无奇异工作空间,并且是完全各向同性的。这些发现对3-XXRRU颗粒的尺寸合成和控制具有重要意义。此外,当与位置分析的封闭形式解决方案相结合时,正如同一作者在之前的出版物中所展示的那样,3-XXRRU pm成为其他六自由度pm的有趣替代品。通过一个案例研究进一步说明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Robotics
Robotics Mathematics-Control and Optimization
CiteScore
6.70
自引率
8.10%
发文量
114
审稿时长
11 weeks
期刊介绍: Robotics publishes original papers, technical reports, case studies, review papers and tutorials in all the aspects of robotics. Special Issues devoted to important topics in advanced robotics will be published from time to time. It particularly welcomes those emerging methodologies and techniques which bridge theoretical studies and applications and have significant potential for real-world applications. It provides a forum for information exchange between professionals, academicians and engineers who are working in the area of robotics, helping them to disseminate research findings and to learn from each other’s work. Suitable topics include, but are not limited to: -intelligent robotics, mechatronics, and biomimetics -novel and biologically-inspired robotics -modelling, identification and control of robotic systems -biomedical, rehabilitation and surgical robotics -exoskeletons, prosthetics and artificial organs -AI, neural networks and fuzzy logic in robotics -multimodality human-machine interaction -wireless sensor networks for robot navigation -multi-sensor data fusion and SLAM
期刊最新文献
Evaluation of a Voice-Enabled Autonomous Camera Control System for the da Vinci Surgical Robot NU-Biped-4.5: A Lightweight and Low-Prototyping-Cost Full-Size Bipedal Robot Probability-Based Strategy for a Football Multi-Agent Autonomous Robot System An Enhanced Multi-Sensor Simultaneous Localization and Mapping (SLAM) Framework with Coarse-to-Fine Loop Closure Detection Based on a Tightly Coupled Error State Iterative Kalman Filter Playing Checkers with an Intelligent and Collaborative Robotic System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1