NU-Biped-4.5: A Lightweight and Low-Prototyping-Cost Full-Size Bipedal Robot

IF 2.9 Q2 ROBOTICS Robotics Pub Date : 2023-12-31 DOI:10.3390/robotics13010009
Michele Folgheraiter, Sharafatdin Yessirkepov, T. Umurzakov
{"title":"NU-Biped-4.5: A Lightweight and Low-Prototyping-Cost Full-Size Bipedal Robot","authors":"Michele Folgheraiter, Sharafatdin Yessirkepov, T. Umurzakov","doi":"10.3390/robotics13010009","DOIUrl":null,"url":null,"abstract":"This paper presents the design of a new lightweight, full-size bipedal robot developed in the Humanoid Robotics Laboratory at Nazarbayev University. The robot, equipped with 12 degrees of freedom (DOFs), stands at 1.1 m tall and weighs only 15 kg (excluding the battery). Through the implementation of a simple mechanical design and the utilization of off-the-shelf components, the overall prototype cost remained under USD 5000. The incorporation of high-performance in-house-developed servomotors enables the robot’s actuation system to generate up to 2400 W of mechanical power, resulting in a power-to-weight ratio of 160 W/kg. The details of the mechanical and electrical design are presented alongside the formalization of the forward kinematic model using the successive screw displacement method and the solution of the inverse kinematics. Tests conducted in both a simulation environment and on the real prototype demonstrate that the robot is capable of accurately following the reference joint trajectories to execute a quasi-static gait, achieving an average power consumption of 496 W.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"121 13","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/robotics13010009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the design of a new lightweight, full-size bipedal robot developed in the Humanoid Robotics Laboratory at Nazarbayev University. The robot, equipped with 12 degrees of freedom (DOFs), stands at 1.1 m tall and weighs only 15 kg (excluding the battery). Through the implementation of a simple mechanical design and the utilization of off-the-shelf components, the overall prototype cost remained under USD 5000. The incorporation of high-performance in-house-developed servomotors enables the robot’s actuation system to generate up to 2400 W of mechanical power, resulting in a power-to-weight ratio of 160 W/kg. The details of the mechanical and electrical design are presented alongside the formalization of the forward kinematic model using the successive screw displacement method and the solution of the inverse kinematics. Tests conducted in both a simulation environment and on the real prototype demonstrate that the robot is capable of accurately following the reference joint trajectories to execute a quasi-static gait, achieving an average power consumption of 496 W.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NU-Biped-4.5:轻量级、低原型成本的全尺寸双足机器人
本文介绍了纳扎尔巴耶夫大学仿人机器人实验室开发的新型轻型全尺寸双足机器人的设计。该机器人配备 12 个自由度 (DOF),高 1.1 米,重仅 15 千克(不包括电池)。由于采用了简单的机械设计并使用了现成的部件,原型机的总成本保持在 5000 美元以下。内部开发的高性能伺服电机使机器人的执行系统能够产生高达 2400 W 的机械功率,功率重量比为 160 W/kg。在介绍机械和电气设计细节的同时,还介绍了使用连续螺杆位移法建立的正向运动学模型,以及逆向运动学的求解方法。在模拟环境和实际原型上进行的测试表明,机器人能够准确地按照参考关节轨迹执行准静态步态,平均功耗为 496 瓦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Robotics
Robotics Mathematics-Control and Optimization
CiteScore
6.70
自引率
8.10%
发文量
114
审稿时长
11 weeks
期刊介绍: Robotics publishes original papers, technical reports, case studies, review papers and tutorials in all the aspects of robotics. Special Issues devoted to important topics in advanced robotics will be published from time to time. It particularly welcomes those emerging methodologies and techniques which bridge theoretical studies and applications and have significant potential for real-world applications. It provides a forum for information exchange between professionals, academicians and engineers who are working in the area of robotics, helping them to disseminate research findings and to learn from each other’s work. Suitable topics include, but are not limited to: -intelligent robotics, mechatronics, and biomimetics -novel and biologically-inspired robotics -modelling, identification and control of robotic systems -biomedical, rehabilitation and surgical robotics -exoskeletons, prosthetics and artificial organs -AI, neural networks and fuzzy logic in robotics -multimodality human-machine interaction -wireless sensor networks for robot navigation -multi-sensor data fusion and SLAM
期刊最新文献
Evaluation of a Voice-Enabled Autonomous Camera Control System for the da Vinci Surgical Robot NU-Biped-4.5: A Lightweight and Low-Prototyping-Cost Full-Size Bipedal Robot Probability-Based Strategy for a Football Multi-Agent Autonomous Robot System An Enhanced Multi-Sensor Simultaneous Localization and Mapping (SLAM) Framework with Coarse-to-Fine Loop Closure Detection Based on a Tightly Coupled Error State Iterative Kalman Filter Playing Checkers with an Intelligent and Collaborative Robotic System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1