Michele Folgheraiter, Sharafatdin Yessirkepov, T. Umurzakov
{"title":"NU-Biped-4.5: A Lightweight and Low-Prototyping-Cost Full-Size Bipedal Robot","authors":"Michele Folgheraiter, Sharafatdin Yessirkepov, T. Umurzakov","doi":"10.3390/robotics13010009","DOIUrl":null,"url":null,"abstract":"This paper presents the design of a new lightweight, full-size bipedal robot developed in the Humanoid Robotics Laboratory at Nazarbayev University. The robot, equipped with 12 degrees of freedom (DOFs), stands at 1.1 m tall and weighs only 15 kg (excluding the battery). Through the implementation of a simple mechanical design and the utilization of off-the-shelf components, the overall prototype cost remained under USD 5000. The incorporation of high-performance in-house-developed servomotors enables the robot’s actuation system to generate up to 2400 W of mechanical power, resulting in a power-to-weight ratio of 160 W/kg. The details of the mechanical and electrical design are presented alongside the formalization of the forward kinematic model using the successive screw displacement method and the solution of the inverse kinematics. Tests conducted in both a simulation environment and on the real prototype demonstrate that the robot is capable of accurately following the reference joint trajectories to execute a quasi-static gait, achieving an average power consumption of 496 W.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"121 13","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/robotics13010009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the design of a new lightweight, full-size bipedal robot developed in the Humanoid Robotics Laboratory at Nazarbayev University. The robot, equipped with 12 degrees of freedom (DOFs), stands at 1.1 m tall and weighs only 15 kg (excluding the battery). Through the implementation of a simple mechanical design and the utilization of off-the-shelf components, the overall prototype cost remained under USD 5000. The incorporation of high-performance in-house-developed servomotors enables the robot’s actuation system to generate up to 2400 W of mechanical power, resulting in a power-to-weight ratio of 160 W/kg. The details of the mechanical and electrical design are presented alongside the formalization of the forward kinematic model using the successive screw displacement method and the solution of the inverse kinematics. Tests conducted in both a simulation environment and on the real prototype demonstrate that the robot is capable of accurately following the reference joint trajectories to execute a quasi-static gait, achieving an average power consumption of 496 W.
期刊介绍:
Robotics publishes original papers, technical reports, case studies, review papers and tutorials in all the aspects of robotics. Special Issues devoted to important topics in advanced robotics will be published from time to time. It particularly welcomes those emerging methodologies and techniques which bridge theoretical studies and applications and have significant potential for real-world applications. It provides a forum for information exchange between professionals, academicians and engineers who are working in the area of robotics, helping them to disseminate research findings and to learn from each other’s work. Suitable topics include, but are not limited to: -intelligent robotics, mechatronics, and biomimetics -novel and biologically-inspired robotics -modelling, identification and control of robotic systems -biomedical, rehabilitation and surgical robotics -exoskeletons, prosthetics and artificial organs -AI, neural networks and fuzzy logic in robotics -multimodality human-machine interaction -wireless sensor networks for robot navigation -multi-sensor data fusion and SLAM