{"title":"Mass ratio factor in control performance of optimum tuned liquid dampers","authors":"Ayla Ocak, Gebrail Bekdaş, Sinan Melih Nigdeli","doi":"10.1002/tal.2063","DOIUrl":null,"url":null,"abstract":"Summary Tuned liquid dampers provide structure control with the help of the liquid mass in tanks that are attached to the structure. The mass ratio affects the optimum tuned liquid damper (TLD) parameters. This study examines the effect of mass ratio on the control performance of TLD devices in providing seismic control of structures with different damping ratios. For this purpose, TLD devices with different mass ratios were placed on two different single‐story steel and reinforced concrete structure models, and their performance under earthquake excitation was investigated. TLD parameters for obtaining the optimum displacement level in the 0.5‐ and 1.0‐s structure natural period for both structure types were optimized with the Jaya algorithm (JA), which is a metaheuristic algorithm. By using the optimum TLD parameters, the structural displacement and total acceleration values were obtained by the critical earthquake analysis. When the results are examined, it is understood that TLD mass increase from a 20% mass ratio for both structure types and selected structure periods does not have a significant effect on TLD control performance.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/tal.2063","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Summary Tuned liquid dampers provide structure control with the help of the liquid mass in tanks that are attached to the structure. The mass ratio affects the optimum tuned liquid damper (TLD) parameters. This study examines the effect of mass ratio on the control performance of TLD devices in providing seismic control of structures with different damping ratios. For this purpose, TLD devices with different mass ratios were placed on two different single‐story steel and reinforced concrete structure models, and their performance under earthquake excitation was investigated. TLD parameters for obtaining the optimum displacement level in the 0.5‐ and 1.0‐s structure natural period for both structure types were optimized with the Jaya algorithm (JA), which is a metaheuristic algorithm. By using the optimum TLD parameters, the structural displacement and total acceleration values were obtained by the critical earthquake analysis. When the results are examined, it is understood that TLD mass increase from a 20% mass ratio for both structure types and selected structure periods does not have a significant effect on TLD control performance.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.