{"title":"A hybrid part-of-speech tagger with annotated Kurdish corpus: advancements in POS tagging","authors":"Dastan Maulud, Karwan Jacksi, Ismael Ali","doi":"10.1093/llc/fqad066","DOIUrl":null,"url":null,"abstract":"Abstract With the rapid growth of online content written in the Kurdish language, there is an increasing need to make it machine-readable and processable. Part of speech (POS) tagging is a critical aspect of natural language processing (NLP), playing a significant role in applications such as speech recognition, natural language parsing, information retrieval, and multiword term extraction. This study details the creation of the DASTAN corpus, the first POS-annotated corpus for the Sorani Kurdish dialect. The corpus, containing 74,258 words and thirty-eight tags, employs a hybrid approach utilizing the bigram hidden Markov model in combination with the Kurdish rule-based approach to POS tagging. This approach addresses two key problems that arise with rule-based approaches, namely misclassified words and ambiguity-related unanalyzed words. The proposed approach’s accuracy was assessed by training and testing it on the DASTAN corpus, yielding a 96% accuracy rate. Overall, this study’s findings demonstrate the effectiveness of the proposed hybrid approach and its potential to enhance NLP applications for Sorani Kurdish.","PeriodicalId":45315,"journal":{"name":"Digital Scholarship in the Humanities","volume":"71 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Scholarship in the Humanities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/llc/fqad066","RegionNum":3,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"HUMANITIES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract With the rapid growth of online content written in the Kurdish language, there is an increasing need to make it machine-readable and processable. Part of speech (POS) tagging is a critical aspect of natural language processing (NLP), playing a significant role in applications such as speech recognition, natural language parsing, information retrieval, and multiword term extraction. This study details the creation of the DASTAN corpus, the first POS-annotated corpus for the Sorani Kurdish dialect. The corpus, containing 74,258 words and thirty-eight tags, employs a hybrid approach utilizing the bigram hidden Markov model in combination with the Kurdish rule-based approach to POS tagging. This approach addresses two key problems that arise with rule-based approaches, namely misclassified words and ambiguity-related unanalyzed words. The proposed approach’s accuracy was assessed by training and testing it on the DASTAN corpus, yielding a 96% accuracy rate. Overall, this study’s findings demonstrate the effectiveness of the proposed hybrid approach and its potential to enhance NLP applications for Sorani Kurdish.
期刊介绍:
DSH or Digital Scholarship in the Humanities is an international, peer reviewed journal which publishes original contributions on all aspects of digital scholarship in the Humanities including, but not limited to, the field of what is currently called the Digital Humanities. Long and short papers report on theoretical, methodological, experimental, and applied research and include results of research projects, descriptions and evaluations of tools, techniques, and methodologies, and reports on work in progress. DSH also publishes reviews of books and resources. Digital Scholarship in the Humanities was previously known as Literary and Linguistic Computing.