{"title":"Ferroelectric liquid crystal array driven by a two-layer electrode with a 1 × 1 μm pixel pitch for light modulation in electro-holography","authors":"Shintaro Aso, Kisho Yamamoto, Ken-ichi Aoshima, Ryo Higashida, Nobuhiko Funabashi, Junichi Shibasaki, Takahiro Ishinabe, Yosei Shibata, Hideo Fujikake, Kenji Machida","doi":"10.1002/jsid.1260","DOIUrl":null,"url":null,"abstract":"<p>We clarified that a ferroelectric liquid crystal (FLC) has high resolution display capability as small as 1 × 1 μm pixel pitch using an FLC pixel array with a two-layer electrode, which has a 1 × 1-μm-checkered apertured electrode and a plane electrode separated by an insulation layer. By applying +2 V to the apertured electrode and −10 V to the plane electrode in the two-layer electrode and 0 V to the transparent common electrode, a checkered pattern was clearly observed, which indicates the successful individual pixel driving with a pixel pitch of 1 × 1 μm. When fabricating 1 × 2-μm-pitch rectangular FLC pixels, we elucidated that the liquid crystal alignment direction should be along the shorter side of the pixels to avoid asymmetric transmittance distribution in each pixel. Moreover, we successfully reconstructed a 3D holographic image using 10 × 10 k FLC pixel array with a pitch of 1 × 1 μm driven by the two-layer electrode with hologram-patterned apertures. We showed that FLC is a strong candidate material for realizing spatial light modulator with extremely small pixel pitches, which is essential for holographic displays with wide-viewing-zone angles.</p>","PeriodicalId":49979,"journal":{"name":"Journal of the Society for Information Display","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society for Information Display","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsid.1260","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We clarified that a ferroelectric liquid crystal (FLC) has high resolution display capability as small as 1 × 1 μm pixel pitch using an FLC pixel array with a two-layer electrode, which has a 1 × 1-μm-checkered apertured electrode and a plane electrode separated by an insulation layer. By applying +2 V to the apertured electrode and −10 V to the plane electrode in the two-layer electrode and 0 V to the transparent common electrode, a checkered pattern was clearly observed, which indicates the successful individual pixel driving with a pixel pitch of 1 × 1 μm. When fabricating 1 × 2-μm-pitch rectangular FLC pixels, we elucidated that the liquid crystal alignment direction should be along the shorter side of the pixels to avoid asymmetric transmittance distribution in each pixel. Moreover, we successfully reconstructed a 3D holographic image using 10 × 10 k FLC pixel array with a pitch of 1 × 1 μm driven by the two-layer electrode with hologram-patterned apertures. We showed that FLC is a strong candidate material for realizing spatial light modulator with extremely small pixel pitches, which is essential for holographic displays with wide-viewing-zone angles.
期刊介绍:
The Journal of the Society for Information Display publishes original works dealing with the theory and practice of information display. Coverage includes materials, devices and systems; the underlying chemistry, physics, physiology and psychology; measurement techniques, manufacturing technologies; and all aspects of the interaction between equipment and its users. Review articles are also published in all of these areas. Occasional special issues or sections consist of collections of papers on specific topical areas or collections of full length papers based in part on oral or poster presentations given at SID sponsored conferences.