Mesozoic-Cenozoic Topographic Evolution of the South Tianshan (NW China): Insights from Detrital Apatite Geo-Thermochronological and Geochemical Analyses

IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Lithosphere Pub Date : 2023-09-15 DOI:10.2113/2023/lithosphere_2023_190
Dunfeng Xiang, Zhiyong Zhang, David Chew, Marc Jolivet, Marco G. Malusà, Chao Guo, Nan Wang, Wenjiao Xiao
{"title":"Mesozoic-Cenozoic Topographic Evolution of the South Tianshan (NW China): Insights from Detrital Apatite Geo-Thermochronological and Geochemical Analyses","authors":"Dunfeng Xiang, Zhiyong Zhang, David Chew, Marc Jolivet, Marco G. Malusà, Chao Guo, Nan Wang, Wenjiao Xiao","doi":"10.2113/2023/lithosphere_2023_190","DOIUrl":null,"url":null,"abstract":"Abstract The present-day topography of Tianshan is the product of repeated phases of Meso-Cenozoic intracontinental deformation and reactivation, whereas the long-term Mesozoic topographic evolution and the timing of the onset of Cenozoic deformation remain debated. New insights into the Meso-Cenozoic geodynamic evolution and related basin-range interactions in the Tianshan were obtained based on new detrital single-grain apatite U-Pb, fission-track, and trace-element provenance data from Mesozoic sedimentary sequences on the northern margin of the Tarim Basin. Detrital apatite U-Pb age data from Early-Middle Triassic clastic rocks show two prominent age populations at 500–390 Ma and 330–260 Ma, with a paucity of ages between 390 and 330 Ma, suggesting that sediment source is predominantly from the northern Tarim and South Tianshan. From the Late Triassic to Early Jurassic, the first appearance of populations in the 390–330 Ma and 260–220 age ranges indicates that the Central Tianshan-Yili Block and Western Kunlun Orogen were source regions for the northern margin of Tarim Basin. In the Cretaceous strata, south-directed paleocurrents combined with the decrease in the 390–330 Ma age population from the Central Tianshan-Yili Block imply that South Tianshan was uplifted and again became the main source region to the Baicheng-Kuqa depression during the Cretaceous. Our new apatite fission-track data from the southern Chinese Tianshan suggest that rapid cooling commenced at c. 30 Ma along the southern margin, and the Early Mesozoic strata exposed on the southern flank of the Tianshan underwent c. 4–5 km of late Cenozoic exhumation during this period. This age is approximately synchronous with the onset of exhumation/deformation not only in the whole Tianshan but also in the interior of the Tibetan Plateau and its margins. It suggests that far-field, N-directed shortening resulting from the India-Asia collision was transmitted to the Tianshan at that time.","PeriodicalId":18147,"journal":{"name":"Lithosphere","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2113/2023/lithosphere_2023_190","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The present-day topography of Tianshan is the product of repeated phases of Meso-Cenozoic intracontinental deformation and reactivation, whereas the long-term Mesozoic topographic evolution and the timing of the onset of Cenozoic deformation remain debated. New insights into the Meso-Cenozoic geodynamic evolution and related basin-range interactions in the Tianshan were obtained based on new detrital single-grain apatite U-Pb, fission-track, and trace-element provenance data from Mesozoic sedimentary sequences on the northern margin of the Tarim Basin. Detrital apatite U-Pb age data from Early-Middle Triassic clastic rocks show two prominent age populations at 500–390 Ma and 330–260 Ma, with a paucity of ages between 390 and 330 Ma, suggesting that sediment source is predominantly from the northern Tarim and South Tianshan. From the Late Triassic to Early Jurassic, the first appearance of populations in the 390–330 Ma and 260–220 age ranges indicates that the Central Tianshan-Yili Block and Western Kunlun Orogen were source regions for the northern margin of Tarim Basin. In the Cretaceous strata, south-directed paleocurrents combined with the decrease in the 390–330 Ma age population from the Central Tianshan-Yili Block imply that South Tianshan was uplifted and again became the main source region to the Baicheng-Kuqa depression during the Cretaceous. Our new apatite fission-track data from the southern Chinese Tianshan suggest that rapid cooling commenced at c. 30 Ma along the southern margin, and the Early Mesozoic strata exposed on the southern flank of the Tianshan underwent c. 4–5 km of late Cenozoic exhumation during this period. This age is approximately synchronous with the onset of exhumation/deformation not only in the whole Tianshan but also in the interior of the Tibetan Plateau and its margins. It suggests that far-field, N-directed shortening resulting from the India-Asia collision was transmitted to the Tianshan at that time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
南天山中新生代地形演化:来自碎屑磷灰石地-热年代学和地球化学分析的启示
摘要天山现今的地形是中新生代陆内反复变形和活化的产物,而长期的中生代地形演化和新生代变形发生的时间仍然存在争议。利用塔里木盆地北缘中生代沉积序列的碎屑单粒磷灰石U-Pb、裂变径迹和微量元素物源资料,对天山中新生代地球动力学演化及盆-岭相互作用有了新的认识。早中三叠世碎屑岩的碎屑磷灰石U-Pb年龄显示出500 ~ 390 Ma和330 ~ 260 Ma两个突出的年龄群,而390 ~ 330 Ma之间的年龄较少,表明沉积物来源主要来自塔北和南天山。晚三叠世至早侏罗世,390 ~ 330 Ma和260 ~ 220 Ma的种群首次出现,表明塔里木盆地北缘的源区为中天山—伊犁地块和西昆仑造山带。在白垩系地层中,南向古流与中天山—伊力地块390 ~ 330 Ma种群的减少表明,白垩系南天山隆升,再次成为白城—库车坳陷的主要烃源区。新的天山磷灰石裂变径迹资料表明,南缘的快速冷却开始于c. 30 Ma,暴露在天山南侧的早中生代地层在此期间经历了约4-5 km的晚新生代发掘。这一时代不仅与整个天山,而且与青藏高原内部及其边缘的发掘/变形开始时间大致同步。这表明印度-亚洲碰撞引起的远场n向缩短在当时被传递到天山。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lithosphere
Lithosphere GEOCHEMISTRY & GEOPHYSICS-GEOLOGY
CiteScore
3.80
自引率
16.70%
发文量
284
审稿时长
>12 weeks
期刊介绍: The open access journal will have an expanded scope covering research in all areas of earth, planetary, and environmental sciences, providing a unique publishing choice for authors in the geoscience community.
期刊最新文献
A Novel Method for Improving the Robustness of Rock Acoustic Emission b Value Estimation through Data Volume Expansion Discovery of a Buried Active Fault to the South of the 1679 M8.0 Sanhe–Pinggu Earthquake in the North China Plain: Evidence from Seismic Reflection Exploration and Drilling Profile Apatite Fission-Track Dating: A Comparative Study of Ages Obtained by the Automated Counting LA-ICP-MS and External Detector Methodologies Integrated Simulation for Microseismic Fracture Networks with Automatic History Matching in Tight Oil Development: A Field Case from Block Y2 in Ordos Basin, China Insight into the Evolution of the Eastern Margin of the Wyoming Craton from Complex, Laterally Variable Shear Wave Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1