A Systematic Review on Bio-Based Phase Change Materials

None A. Yadav, Mahendran Samykano, A. K. Pandey, V.V. Tyagi, R. Devarajan, K. Sudhakar, M. M. Noor
{"title":"A Systematic Review on Bio-Based Phase Change Materials","authors":"None A. Yadav, Mahendran Samykano, A. K. Pandey, V.V. Tyagi, R. Devarajan, K. Sudhakar, M. M. Noor","doi":"10.15282/ijame.20.2.2023.16.0814","DOIUrl":null,"url":null,"abstract":"Global warming and energy depletion are the main problems faced in recent years due to energy consumption by industries and the global population. Phase change materials (PCMs) with significant properties tend to store and release energy and fill the demand and supply gap. Most organic and inorganic PCMs are not considered environmentally eco-friendly when used for thermal energy storage (TES). Because they are formed from non-conventional energy resources, their carbon footmark and environmental effect are not ignored. To reduce problems, an urgent need for eco-friendly materials is required. Green substitute bio-based phase change materials (BPCMs) have gained extensive attention and are considered the best suitable replacement for organic and inorganic PCMs because BPCMs exhibit significant properties that are cost-effective, eco-friendly, renewable and convenient for thermal energy storage. However, the thermal conductivity of BPCMs is too low, which delays TES and heat transfer rates. Furthermore, this paper summarizes the reduction of low thermal conductivity problems with the help of highly conductive nanoparticles dispersed into the BPCMs and the fabrication methods of BPCMs composites. This article also provides information for futuristic researchers about the methods of fabrication and factors for enhancing the thermal conductivity of an eco-friendly BPCM composite and draws an important conclusion from the literature.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.20.2.2023.16.0814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Global warming and energy depletion are the main problems faced in recent years due to energy consumption by industries and the global population. Phase change materials (PCMs) with significant properties tend to store and release energy and fill the demand and supply gap. Most organic and inorganic PCMs are not considered environmentally eco-friendly when used for thermal energy storage (TES). Because they are formed from non-conventional energy resources, their carbon footmark and environmental effect are not ignored. To reduce problems, an urgent need for eco-friendly materials is required. Green substitute bio-based phase change materials (BPCMs) have gained extensive attention and are considered the best suitable replacement for organic and inorganic PCMs because BPCMs exhibit significant properties that are cost-effective, eco-friendly, renewable and convenient for thermal energy storage. However, the thermal conductivity of BPCMs is too low, which delays TES and heat transfer rates. Furthermore, this paper summarizes the reduction of low thermal conductivity problems with the help of highly conductive nanoparticles dispersed into the BPCMs and the fabrication methods of BPCMs composites. This article also provides information for futuristic researchers about the methods of fabrication and factors for enhancing the thermal conductivity of an eco-friendly BPCM composite and draws an important conclusion from the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物基相变材料研究综述
由于工业和全球人口的能源消耗,全球变暖和能源枯竭是近年来面临的主要问题。相变材料具有存储和释放能量、填补需求和供应缺口的重要特性。当用于热能储存(TES)时,大多数有机和无机pcm都不被认为是环保的。由于它们是由非常规能源资源形成的,因此它们的碳足迹和环境影响不容忽视。为了减少这些问题,我们迫切需要环保材料。绿色替代生物基相变材料(BPCMs)因其具有成本效益高、生态友好、可再生和便于储热等特点而受到广泛关注,被认为是有机和无机相变材料的最佳替代品。然而,BPCMs的导热系数太低,这延迟了TES和传热速率。此外,本文还总结了利用高导电性纳米颗粒分散到bpcm中来降低低导热性问题以及bpcm复合材料的制备方法。本文还为未来的研究人员提供了有关环保BPCM复合材料的制造方法和提高其导热性的因素的信息,并从文献中得出了重要的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
10.00%
发文量
43
审稿时长
20 weeks
期刊介绍: The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.
期刊最新文献
Motion Sickness Susceptibility Among Malaysians When Travelling in a Moving Vehicle The Effect of Motorcycle Helmet Type on Head Response in Oblique Impact Effect of Bilayer Nano-Micro Hydroxyapatite on the Surface Characteristics of Implanted Ti-6Al-4V ELI A Prediction of Graphene Nanoplatelets Addition Effects on Diesel Engine Emissions The Effect of Landing Gear Dimension Variation on the Static Strength and Dynamic Response of Unmanned Aerial Vehicle (UAV)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1