J. Martínez, X. Rigueira, M. Araújo, E. Giráldez, A. Recamán
{"title":"Computer vision application for improved product traceability in the granite manufacturing industry","authors":"J. Martínez, X. Rigueira, M. Araújo, E. Giráldez, A. Recamán","doi":"10.3989/mc.2023.308922","DOIUrl":null,"url":null,"abstract":"The traceability of granite blocks consists in identifying each block with a finite number of colour bands that represent a numerical code. This code has to be read several times throughout the manufacturing process, but its accuracy is subject to human errors, leading to cause faults in the traceability system. A computer vision system is presented to address this problem through colour detection and the decryption of the associated code. The system developed makes use of colour space transformations and various thresholds for the isolation of the colours. Computer vision methods are implemented, along with contour detection procedures for colour identification. Lastly, the analysis of geometrical features is used to decrypt the colour code captured. The proposed algorithm is trained on a set of 109 pictures taken in different environmental conditions and validated on a set of 21 images. The outcome shows promising results with an accuracy rate of 75.00% in the validation process. Therefore, the application presented can help employees reduce the number of mistakes in product tracking.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3989/mc.2023.308922","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The traceability of granite blocks consists in identifying each block with a finite number of colour bands that represent a numerical code. This code has to be read several times throughout the manufacturing process, but its accuracy is subject to human errors, leading to cause faults in the traceability system. A computer vision system is presented to address this problem through colour detection and the decryption of the associated code. The system developed makes use of colour space transformations and various thresholds for the isolation of the colours. Computer vision methods are implemented, along with contour detection procedures for colour identification. Lastly, the analysis of geometrical features is used to decrypt the colour code captured. The proposed algorithm is trained on a set of 109 pictures taken in different environmental conditions and validated on a set of 21 images. The outcome shows promising results with an accuracy rate of 75.00% in the validation process. Therefore, the application presented can help employees reduce the number of mistakes in product tracking.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.