Impact of Crystallite Size on Structural, Optical and Magnetic Characteristics of La0.7Sr0.15Ca0.15MnO3 Nanocrystalline

IF 1 Q3 PHYSICS, MULTIDISCIPLINARY East European Journal of Physics Pub Date : 2023-09-04 DOI:10.26565/2312-4334-2023-3-39
Mohd Abdul Shukur, Katrapally Vijaya Kumar, Gade Narsinga Rao
{"title":"Impact of Crystallite Size on Structural, Optical and Magnetic Characteristics of La0.7Sr0.15Ca0.15MnO3 Nanocrystalline","authors":"Mohd Abdul Shukur, Katrapally Vijaya Kumar, Gade Narsinga Rao","doi":"10.26565/2312-4334-2023-3-39","DOIUrl":null,"url":null,"abstract":"Nanocrystalline La0.7Sr0.15Ca0.15MnO3 (LSCMO) manganites were prepared by the combustion process and heated to various annealing temperatures (TA) to get various sized crystallites. The X-ray diffraction (XRD) patterns provided evidence that a Rhombohedral structure with space group was formed. Additionally, an increase in the size of the crystallites was observed, from 15.64 to 36.78nm, as the temperature (TA) increased from 700℃ to 1300℃. The FESEM micrographs revealed that homogeneous with porosity. The FTIR spectra showed five absorption peaks. The Optical energy gap of LSCMO nanocrystalline is decreased from 3.51 to 3.28 eV as annealed temperature raised, reveals that the LSCMO nanoparticles are semiconductor in nature. Room temperature Raman spectra of LSCMO nanoparticles demonstrate a notable reliance on annealing temperature. When the Raman modes were analysed with respect to TA, it was observed that the Raman vibrational phonon mode below 200cm-1 (A1g) and four modes (Eg) in the range 200-800cm-1 displayed significant displacements and widening, which were associated with oxygen sublattice distortion. Considerable changes were observed in both the intensity and full width half maximum (FWHM) of the five Raman modes as the annealing temperature increased. Magnetic behaviour using M-H loop at room temperature were measured by the Vibrating sample magnetometer revealed that gradation of saturation magnetization as the function of annealing temperature. Hence there is a remarkable crystallite size effect on optical and magnetic properties of LSCMO nanocrystallites.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"East European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2312-4334-2023-3-39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanocrystalline La0.7Sr0.15Ca0.15MnO3 (LSCMO) manganites were prepared by the combustion process and heated to various annealing temperatures (TA) to get various sized crystallites. The X-ray diffraction (XRD) patterns provided evidence that a Rhombohedral structure with space group was formed. Additionally, an increase in the size of the crystallites was observed, from 15.64 to 36.78nm, as the temperature (TA) increased from 700℃ to 1300℃. The FESEM micrographs revealed that homogeneous with porosity. The FTIR spectra showed five absorption peaks. The Optical energy gap of LSCMO nanocrystalline is decreased from 3.51 to 3.28 eV as annealed temperature raised, reveals that the LSCMO nanoparticles are semiconductor in nature. Room temperature Raman spectra of LSCMO nanoparticles demonstrate a notable reliance on annealing temperature. When the Raman modes were analysed with respect to TA, it was observed that the Raman vibrational phonon mode below 200cm-1 (A1g) and four modes (Eg) in the range 200-800cm-1 displayed significant displacements and widening, which were associated with oxygen sublattice distortion. Considerable changes were observed in both the intensity and full width half maximum (FWHM) of the five Raman modes as the annealing temperature increased. Magnetic behaviour using M-H loop at room temperature were measured by the Vibrating sample magnetometer revealed that gradation of saturation magnetization as the function of annealing temperature. Hence there is a remarkable crystallite size effect on optical and magnetic properties of LSCMO nanocrystallites.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
晶粒尺寸对La0.7Sr0.15Ca0.15MnO3纳米晶结构、光学和磁性的影响
采用燃烧法制备了La0.7Sr0.15Ca0.15MnO3 (LSCMO)纳米晶,并加热到不同的退火温度(TA),得到不同尺寸的晶粒。x射线衍射(XRD)结果表明,该材料形成了具有空间基团的菱形结构。另外,随着温度(TA)从700℃升高到1300℃,晶粒尺寸从15.64 nm增大到36.78nm。FESEM显微图显示其孔隙度均匀。FTIR光谱显示有5个吸收峰。随着退火温度的升高,LSCMO纳米晶的光能隙从3.51 eV减小到3.28 eV,表明LSCMO纳米晶具有半导体性质。LSCMO纳米粒子的室温拉曼光谱显示出对退火温度的显著依赖。当拉曼模式相对于TA进行分析时,观察到200cm-1以下的拉曼振动声子模式(A1g)和200-800cm-1范围内的四个模式(Eg)表现出明显的位移和加宽,这与氧亚晶格畸变有关。随着退火温度的升高,五种拉曼模式的强度和全宽半最大值(FWHM)都发生了较大的变化。用振动样品磁强计测量了M-H环在室温下的磁性行为,发现饱和磁化强度随退火温度的变化而变化。因此,晶体尺寸对LSCMO纳米晶的光学和磁性有显著的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
East European Journal of Physics
East European Journal of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.10
自引率
25.00%
发文量
58
审稿时长
8 weeks
期刊最新文献
Non-Relativistic Calculation of Excited-State Ionization Potentials for Li-Like Ions Using Weakest Bound Electron Potential Model Theory The Mechanism of the Formation of Binary Compounds Between Zn and S Impurity Atoms in Si Crystal Lattice Surface Electromagnetic TE-Waves Total Internal Reflection Instability of Ion Cyclotron Waves (ICWS) at the Expense of Lower Hybrid Drift Waves (LHDWS) Turbulence Energy Influence of silicon characteristics on the parameters of manufactured photonics cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1