Pub Date : 2023-12-02DOI: 10.26565/2312-4334-2023-4-02
S. R. Devi, A. S. Devi, A. Deshamukhya
The present work aims to study the previously unstudied Ultraluminous X-ray sources (ULXs) in the galaxy NGC 3585 at its various epochs of Chandra observation. We report here the detection of two new ULXs viz. CXOUJ111306.0-264825 (X-1) and CXOUJ111325.3-264732 (X-2) with their bolometric luminosity > 1039erg s−1 in its various Chandra observations. X-1 was found to be a spectrally hard ULX in both the epochs where it was detected. However in the ULX, X-2, a slight hardening of the spectra was observed within a period of 17 years. Assuming isotropic emission and explained by disk blackbody model, the spectrally softer epoch of X-2 with an inner disk temperature, kTin ∼ 0.79 keV and bolometric luminosity ∼ 2.51 × 1039erg s−1 implies for X-2 to be powered by a compact object, necessarily a black hole of mass, MBH ∼ 44.85+82.11−25.92M⊙ accreting at ∼ 0.42 times the Eddington limit. The Lightcurve of X-1 and X-2 binned at 500s, 1ks, 2ks and 4ks has shown no signature of short-term variability in both the ULXs in kilo-seconds time scales. Overall, both the detected ULXs seem to be almost static sources both in long-term (years) as well as short-term (kilo-seconds) time scales with the presently available Chandra Observations.
{"title":"Spectral and Timing Study of the Newly Detected Ultraluminous X-Ray Sources in NGC 3585 Using Different Chandra Observations.","authors":"S. R. Devi, A. S. Devi, A. Deshamukhya","doi":"10.26565/2312-4334-2023-4-02","DOIUrl":"https://doi.org/10.26565/2312-4334-2023-4-02","url":null,"abstract":"The present work aims to study the previously unstudied Ultraluminous X-ray sources (ULXs) in the galaxy NGC 3585 at its various epochs of Chandra observation. We report here the detection of two new ULXs viz. CXOUJ111306.0-264825 (X-1) and CXOUJ111325.3-264732 (X-2) with their bolometric luminosity > 1039erg s−1 in its various Chandra observations. X-1 was found to be a spectrally hard ULX in both the epochs where it was detected. However in the ULX, X-2, a slight hardening of the spectra was observed within a period of 17 years. Assuming isotropic emission and explained by disk blackbody model, the spectrally softer epoch of X-2 with an inner disk temperature, kTin ∼ 0.79 keV and bolometric luminosity ∼ 2.51 × 1039erg s−1 implies for X-2 to be powered by a compact object, necessarily a black hole of mass, MBH ∼ 44.85+82.11−25.92M⊙ accreting at ∼ 0.42 times the Eddington limit. The Lightcurve of X-1 and X-2 binned at 500s, 1ks, 2ks and 4ks has shown no signature of short-term variability in both the ULXs in kilo-seconds time scales. Overall, both the detected ULXs seem to be almost static sources both in long-term (years) as well as short-term (kilo-seconds) time scales with the presently available Chandra Observations.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"55 3","pages":""},"PeriodicalIF":0.4,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139187529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-02DOI: 10.26565/2312-4334-2023-4-46
G. Onyshchenko, B. Grynyov, Ivan I. Yakymenko, Sergey V. Naydenov, P. Kuznietsov, Oleksandr Shchus
The results of the study of the contributions of the interaction reactions of fast neutron sources of 239Pu-Be and 252Cf to the counting efficiency of registration by oxide scintillators CdWO4, ZnWO4, Bi4Ge3O12 and Gd2SiO5, presented. The amount of gamma quanta per input neutron emitted from final nuclei excited in the reactions of inelastic scattering (n, nʹγ)in, resonant scattering (n, n)res and capture (n, γ)res and radiation capture (n, γ)cap was measured. PMT R1307 operating in single-electron mode was used as a photodetector, the background rate was ~ 5*103 s-1. The measured efficiency ε for scintillators ø40x40 mm was 752 for ZWO, 532 for CWO, 37 for GSO, and 23 for BGO in "counts/neutron" units, measurement error rate ~ 3-5%. The formation of the detector response is influenced by the parameters of the scintillator nuclei, such as the values of the interaction cross sections in the resonance region, the density of nuclear levels of the final nuclei, the lifetime of excited nuclear states, the upper limit of the resonance region of the cross section, as well as the scintillation time and geometric parameters of the scintillators. A phenomenological model of the response of an oxide scintillator to fast neutrons is proposed.
{"title":"The Contributions to Registration Efficiency of The Fast Neutron Reactions on The Nuclei of The Heavy Oxide Scintillators","authors":"G. Onyshchenko, B. Grynyov, Ivan I. Yakymenko, Sergey V. Naydenov, P. Kuznietsov, Oleksandr Shchus","doi":"10.26565/2312-4334-2023-4-46","DOIUrl":"https://doi.org/10.26565/2312-4334-2023-4-46","url":null,"abstract":"The results of the study of the contributions of the interaction reactions of fast neutron sources of 239Pu-Be and 252Cf to the counting efficiency of registration by oxide scintillators CdWO4, ZnWO4, Bi4Ge3O12 and Gd2SiO5, presented. The amount of gamma quanta per input neutron emitted from final nuclei excited in the reactions of inelastic scattering (n, nʹγ)in, resonant scattering (n, n)res and capture (n, γ)res and radiation capture (n, γ)cap was measured. PMT R1307 operating in single-electron mode was used as a photodetector, the background rate was ~ 5*103 s-1. The measured efficiency ε for scintillators ø40x40 mm was 752 for ZWO, 532 for CWO, 37 for GSO, and 23 for BGO in \"counts/neutron\" units, measurement error rate ~ 3-5%. The formation of the detector response is influenced by the parameters of the scintillator nuclei, such as the values of the interaction cross sections in the resonance region, the density of nuclear levels of the final nuclei, the lifetime of excited nuclear states, the upper limit of the resonance region of the cross section, as well as the scintillation time and geometric parameters of the scintillators. A phenomenological model of the response of an oxide scintillator to fast neutrons is proposed.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"14 3","pages":""},"PeriodicalIF":0.4,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139187530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-02DOI: 10.26565/2312-4334-2023-4-20
N. F. Zikrillaev, Maruf K. Khakkulov, Bobir O. Isakov
The paper presents the results of an experimental study of surface morphology, elemental composition, electrophysical and optical properties of Si samples earlier doped with impurity atoms of Zn and S. The results of the study revealed a sufficient concentration of Zn and S elements on Si surface after diffusion (3.1% and 2.6% by weight, respectively). After additional thermal treatment at different temperatures, i.e., at 850°C and 875°C, the samples of I group have regained their initial parameters. However, it’s noteworthy that the mobility of charge carriers in group I samples was comparatively lower than that in group II samples allegedly under the influence of Zn and S binary molecules. After additional heat treatment of all samples at a temperature of 875°C, the authors have studied optical absorption coefficients. And their band gap energies were determined using the Tauc Plot method. According to the results of the study, the optical band gaps in group II and III samples were 1.12 eV, whereas the band gap energy in group I samples after additional thermal treatment at a temperature of 875 °C turned out to be 1.31 eV. Having theoretically calculated the band gap by applying Vegard’s law, the authors suggested that the new structure must be of Si0.92ZnS0.08 - type.
本文介绍了对早期掺杂了 Zn 和 S 杂质原子的硅样品的表面形貌、元素组成、电物理和光学特性进行实验研究的结果。在不同温度(即 850°C 和 875°C)下进行额外热处理后,I 组样品恢复了初始参数。但值得注意的是,据称受 Zn 和 S 二元分子的影响,I 组样品的电荷载流子迁移率比 II 组样品低。在 875°C 的温度下对所有样品进行额外热处理后,作者研究了光吸收系数。它们的带隙能是用陶氏图法确定的。研究结果表明,第二组和第三组样品的光带隙为 1.12 eV,而第一组样品在 875 °C 温度下进行额外热处理后的带隙能量为 1.31 eV。作者运用 Vegard 定律对带隙进行了理论计算,认为新结构一定属于 Si0.92ZnS0.08 类型。
{"title":"The Mechanism of the Formation of Binary Compounds Between Zn and S Impurity Atoms in Si Crystal Lattice","authors":"N. F. Zikrillaev, Maruf K. Khakkulov, Bobir O. Isakov","doi":"10.26565/2312-4334-2023-4-20","DOIUrl":"https://doi.org/10.26565/2312-4334-2023-4-20","url":null,"abstract":"The paper presents the results of an experimental study of surface morphology, elemental composition, electrophysical and optical properties of Si samples earlier doped with impurity atoms of Zn and S. The results of the study revealed a sufficient concentration of Zn and S elements on Si surface after diffusion (3.1% and 2.6% by weight, respectively). After additional thermal treatment at different temperatures, i.e., at 850°C and 875°C, the samples of I group have regained their initial parameters. However, it’s noteworthy that the mobility of charge carriers in group I samples was comparatively lower than that in group II samples allegedly under the influence of Zn and S binary molecules. After additional heat treatment of all samples at a temperature of 875°C, the authors have studied optical absorption coefficients. And their band gap energies were determined using the Tauc Plot method. According to the results of the study, the optical band gaps in group II and III samples were 1.12 eV, whereas the band gap energy in group I samples after additional thermal treatment at a temperature of 875 °C turned out to be 1.31 eV. Having theoretically calculated the band gap by applying Vegard’s law, the authors suggested that the new structure must be of Si0.92ZnS0.08 - type.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"61 9","pages":""},"PeriodicalIF":0.4,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139187441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-02DOI: 10.26565/2312-4334-2023-4-37
V. Galaydych, M. Azarenkov
We have considered the refraction of surface electromagnetic waves (SEW) at the heterogeneous metasurface. The considered structure consists of three regions: mu-negative metamaterial, ordinary magnetic, and vacuum. The boundaries between considered media are planar. A phenomenological approach was used; media were assumed to be lossless and isotropic. In this paper, we show the possibility of total internal reflection effect for SEW of TE-polarization that can propagate along such heterogeneous metasurface. The value of the angle of total internal reflection decreases for higher frequency waves from the interval under consideration. The presented result may help design both research and industry complex systems.
我们考虑了表面电磁波(SEW)在异质超表面的折射问题。所考虑的结构由三个区域组成:μ负超材料、普通磁性和真空。所考虑介质之间的边界为平面。我们采用了一种现象学方法;假定介质是无损耗和各向同性的。在本文中,我们展示了 TE 极化的 SEW 沿这种异质元表面传播时可能产生的全内反射效应。全内反射角的值会随着考虑区间内频率较高的波而减小。该结果可能有助于研究和工业复杂系统的设计。
{"title":"Surface Electromagnetic TE-Waves Total Internal Reflection","authors":"V. Galaydych, M. Azarenkov","doi":"10.26565/2312-4334-2023-4-37","DOIUrl":"https://doi.org/10.26565/2312-4334-2023-4-37","url":null,"abstract":"We have considered the refraction of surface electromagnetic waves (SEW) at the heterogeneous metasurface. The considered structure consists of three regions: mu-negative metamaterial, ordinary magnetic, and vacuum. The boundaries between considered media are planar. A phenomenological approach was used; media were assumed to be lossless and isotropic. In this paper, we show the possibility of total internal reflection effect for SEW of TE-polarization that can propagate along such heterogeneous metasurface. The value of the angle of total internal reflection decreases for higher frequency waves from the interval under consideration. The presented result may help design both research and industry complex systems.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"61 7","pages":""},"PeriodicalIF":0.4,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139187443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-02DOI: 10.26565/2312-4334-2023-4-16
Rustamjon G. Ikramov, K. Muminov, M. Nuritdinova, Bobur Q. Sultonov, Oybek T. Kholmirzayev
The region of fundamental absorption in the optical spectra of amorphous semiconductors is theoretically studied using the Davis-Mott approximation according to the Kubo-Greenwood formula. As is known, three types of optical transitions of the electron can be observed in the fundamental absorption region; from the tail of the valence band to the conduction band, from the valence band to the conduction band and from the valence band to the tail of the conduction band. For all these electronic transitions, analytical expressions of the partial absorption spectra are obtained from two different types of the Kubo-Greenwood formula. The width of the optical mobility gap and the proportionality coefficient were determined in the analytical form of the interband absorption spectrum by fitting them to the experimental interband absorption spectrum. A new method is presented for calculating the density of distribution of electronic states in the conduction band of amorphous carbon based on the experimental interband absorption spectrum and the analytical expression of the Kubo-Greenwood formula written for the interband absorption spectrum.
{"title":"Calculation of the Density of the Distribution of Electronic States in the Conduction Band from the Fundamental Absorption Spectra of Amorphous Semiconductors","authors":"Rustamjon G. Ikramov, K. Muminov, M. Nuritdinova, Bobur Q. Sultonov, Oybek T. Kholmirzayev","doi":"10.26565/2312-4334-2023-4-16","DOIUrl":"https://doi.org/10.26565/2312-4334-2023-4-16","url":null,"abstract":"The region of fundamental absorption in the optical spectra of amorphous semiconductors is theoretically studied using the Davis-Mott approximation according to the Kubo-Greenwood formula. As is known, three types of optical transitions of the electron can be observed in the fundamental absorption region; from the tail of the valence band to the conduction band, from the valence band to the conduction band and from the valence band to the tail of the conduction band. For all these electronic transitions, analytical expressions of the partial absorption spectra are obtained from two different types of the Kubo-Greenwood formula. The width of the optical mobility gap and the proportionality coefficient were determined in the analytical form of the interband absorption spectrum by fitting them to the experimental interband absorption spectrum. A new method is presented for calculating the density of distribution of electronic states in the conduction band of amorphous carbon based on the experimental interband absorption spectrum and the analytical expression of the Kubo-Greenwood formula written for the interband absorption spectrum.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"4 3","pages":""},"PeriodicalIF":0.4,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139187484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-02DOI: 10.26565/2312-4334-2023-4-17
E. U. Arzikulov, A. D. Nurimov, F.A. Salakhitdinov, U.A. Ashirov, T.S. Sharafova, A.Sh. Khujanov, R.M. Usanov
This article presents experimental results on the technology of obtaining and studying the lateral photoelectric effect (LPE) in hybrid structures (HS) of the Fe/SiO2/p-Si and Fe/SiO2/n-Si types. The technology for obtaining such HS consists of two parts: firstly, obtaining compensated (C), highly compensated (HC), and over-compensated (OC) samples of Si . Secondly, obtaining HS Fe/SiO2/p-Si and Fe/SiO2/n-Si. Based on the results, it is shown that sufficiently good HS has been obtained. Experiments on the study of LPE have shown that in the studied HS there is a pronounced manifestation of the lateral photoelectric effect, the magnitude and nature of which strongly depend on the type of conductivity and resistivity of the compensated silicon. The observed features are explained by the fact that in С, HC, and OC silicon samples, impurities that create deep levels in the silicon band gap form various multi-charged complexes that modulate the energy band of silicon, which lead to significant changes in its physicochemical and generation-recombination properties, which underlies the observed effects. Based on the LPE studies, depending on the contact distance, it is possible to determine the numerical values of the diffusion lengths of the minor current carriers (Lp and Ln), their lifetimes (τp and τn), and diffusion coefficients (Dp and Dn) on the substrate material.
{"title":"Lateral Photoelectric Effect In Iron-Silicon Dioxide-Compensated Silicon Hybrid Structures","authors":"E. U. Arzikulov, A. D. Nurimov, F.A. Salakhitdinov, U.A. Ashirov, T.S. Sharafova, A.Sh. Khujanov, R.M. Usanov","doi":"10.26565/2312-4334-2023-4-17","DOIUrl":"https://doi.org/10.26565/2312-4334-2023-4-17","url":null,"abstract":"This article presents experimental results on the technology of obtaining and studying the lateral photoelectric effect (LPE) in hybrid structures (HS) of the Fe/SiO2/p-Si and Fe/SiO2/n-Si types. The technology for obtaining such HS consists of two parts: firstly, obtaining compensated (C), highly compensated (HC), and over-compensated (OC) samples of Si . Secondly, obtaining HS Fe/SiO2/p-Si and Fe/SiO2/n-Si. Based on the results, it is shown that sufficiently good HS has been obtained. Experiments on the study of LPE have shown that in the studied HS there is a pronounced manifestation of the lateral photoelectric effect, the magnitude and nature of which strongly depend on the type of conductivity and resistivity of the compensated silicon. The observed features are explained by the fact that in С, HC, and OC silicon samples, impurities that create deep levels in the silicon band gap form various multi-charged complexes that modulate the energy band of silicon, which lead to significant changes in its physicochemical and generation-recombination properties, which underlies the observed effects. Based on the LPE studies, depending on the contact distance, it is possible to determine the numerical values of the diffusion lengths of the minor current carriers (Lp and Ln), their lifetimes (τp and τn), and diffusion coefficients (Dp and Dn) on the substrate material.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"72 14","pages":""},"PeriodicalIF":0.4,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139187578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-02DOI: 10.26565/2312-4334-2023-4-28
I. Yadgarov, Farid F. Umarov, Asroriddin S. Kosimov, Khayitmurod I. Jabborov, Shodibek Y. Aminov
Graphene, a carbon sheet one atom thick, with carbon atoms arranged in a two-dimensional honeycomb configuration, has a number of intriguing properties. Fullerenes are a promising material for creating electro-active elements in solar cells and active layers in thin-film organic transistors. A computer model of the C20 fullerene molecule was constructed using the energy minimization method with the second-generation Brenner potential (REBO). A computer model of "infinite" defect-free graphene was built, designed to consider the process of adsorption of a C20 fullerene molecule on its surface. To study adsorption process computer models of fullerene and "infinite" graphene were approached to the required distance with a different set of geometric arrangement of fullerene with respect to the graphene surface. It has been established that the adsorption of fullerene C20 on the surface of graphene can be carried out in three different ways, differing in the number of interacting fullerene and graphene atoms. The binding energies and adsorption lengths for C20 fullerene molecules adsorbed on the graphene surface in different ways are calculated. The way of adsorption corresponding to the highest binding energy and the shortest adsorption length was revealed.
{"title":"Simulation of Interaction Processes of C20 Fullerene with Graphene","authors":"I. Yadgarov, Farid F. Umarov, Asroriddin S. Kosimov, Khayitmurod I. Jabborov, Shodibek Y. Aminov","doi":"10.26565/2312-4334-2023-4-28","DOIUrl":"https://doi.org/10.26565/2312-4334-2023-4-28","url":null,"abstract":"Graphene, a carbon sheet one atom thick, with carbon atoms arranged in a two-dimensional honeycomb configuration, has a number of intriguing properties. Fullerenes are a promising material for creating electro-active elements in solar cells and active layers in thin-film organic transistors. A computer model of the C20 fullerene molecule was constructed using the energy minimization method with the second-generation Brenner potential (REBO). A computer model of \"infinite\" defect-free graphene was built, designed to consider the process of adsorption of a C20 fullerene molecule on its surface. To study adsorption process computer models of fullerene and \"infinite\" graphene were approached to the required distance with a different set of geometric arrangement of fullerene with respect to the graphene surface. It has been established that the adsorption of fullerene C20 on the surface of graphene can be carried out in three different ways, differing in the number of interacting fullerene and graphene atoms. The binding energies and adsorption lengths for C20 fullerene molecules adsorbed on the graphene surface in different ways are calculated. The way of adsorption corresponding to the highest binding energy and the shortest adsorption length was revealed.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"61 12","pages":""},"PeriodicalIF":0.4,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139187588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-02DOI: 10.26565/2312-4334-2023-4-42
O. Zhytniakivska, U. Tarabara, Kateryna Vus, V. Trusova, G. Gorbenko
The protein-based nanosystems for targeted drug delivery of a wide array of substances, ranging from small drugs and therapeutic proteins to nucleic acids and genes, attract increasing attention due to their biocompatibility and biodegradability, extraordinary binding capacity for different ligands, accessibility from natural sources, effective drug protection and gentle encapsulation conditions. Due to the multitude of binding pockets and functional groups on the protein surface, these nanocarriers seem to be highly efficient multifunctional nanotheranostic systems that could incorporate both a therapeutic drug and a visualizing agent. This integration serves multiple purposes, including the regulation of drug release, monitoring the alterations at the target site in response to treatment, and offering crucial insights into the efficacy of the intervention in its early stages. The development of these advanced nanosystems necessitates a thorough comprehension of the potential interactions within these intricate systems. In the present study we assessed the potential of six trimethine and seven pentamethine cyanine dyes to serve as visualizing agents in the drug-protein-dye systems which include functionally significant proteins (cytochrome c, serum albumin, lysozyme and insulin and four antiviral drugs, viz. favipiravir, molnupiravir, nirmatrelvir and ritonavir. The ternary systems with the highest dye-protein surface shape complementarity were established for all groups of the examined cyanine dyes. The influence of the cyanine dye structure on the stability of the drug-protein-dye complexes was assessed. The obtained results indicate that the dye-protein affinity is not solely dependent on the length of the polymethine chain. It was found that the most prospective drug delivery systems containing the trimethines and pentamethines as visualizing agents are AK5-6-, AK5-8- and AK3-11-drug-albumin complexes.
{"title":"Simultaneous Docking of Antiviral Drugs and Cyanine Dyes with Proteins Using Multiple Ligand Approach","authors":"O. Zhytniakivska, U. Tarabara, Kateryna Vus, V. Trusova, G. Gorbenko","doi":"10.26565/2312-4334-2023-4-42","DOIUrl":"https://doi.org/10.26565/2312-4334-2023-4-42","url":null,"abstract":"The protein-based nanosystems for targeted drug delivery of a wide array of substances, ranging from small drugs and therapeutic proteins to nucleic acids and genes, attract increasing attention due to their biocompatibility and biodegradability, extraordinary binding capacity for different ligands, accessibility from natural sources, effective drug protection and gentle encapsulation conditions. Due to the multitude of binding pockets and functional groups on the protein surface, these nanocarriers seem to be highly efficient multifunctional nanotheranostic systems that could incorporate both a therapeutic drug and a visualizing agent. This integration serves multiple purposes, including the regulation of drug release, monitoring the alterations at the target site in response to treatment, and offering crucial insights into the efficacy of the intervention in its early stages. The development of these advanced nanosystems necessitates a thorough comprehension of the potential interactions within these intricate systems. In the present study we assessed the potential of six trimethine and seven pentamethine cyanine dyes to serve as visualizing agents in the drug-protein-dye systems which include functionally significant proteins (cytochrome c, serum albumin, lysozyme and insulin and four antiviral drugs, viz. favipiravir, molnupiravir, nirmatrelvir and ritonavir. The ternary systems with the highest dye-protein surface shape complementarity were established for all groups of the examined cyanine dyes. The influence of the cyanine dye structure on the stability of the drug-protein-dye complexes was assessed. The obtained results indicate that the dye-protein affinity is not solely dependent on the length of the polymethine chain. It was found that the most prospective drug delivery systems containing the trimethines and pentamethines as visualizing agents are AK5-6-, AK5-8- and AK3-11-drug-albumin complexes.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"33 2","pages":""},"PeriodicalIF":0.4,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139187596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-02DOI: 10.26565/2312-4334-2023-4-33
O. Ben Lenda, H. El ganich, El Madani Saad
The structural and mechanical studies of the AISI 302 steel aim to design a correct heat treatment in order to optimize its mechanical properties. In this study, we investigated the influence of temperature and time of aging on the structural and mechanical characteristics of the AISI 302 steel. The steel was aged at temperatures of 1100°C and 1200°C and for times ranging from 0 to 6000 minutes. The structural and mechanical characterization techniques used were the metallurgical microscope, nanoindentation technique, and macro-hardness test. At the microstructural level, an increase in the time or temperature of the aging contributed to an increase in the austenite grains size of AISI 302 steel. This microstructural change led to a decrease in the nanohardness and a drop in the macro-hardness between the unaged and aged conditions of AISI 302 steel.
{"title":"Microstructure, Nano-, and Macro-Indentation Characterization of AISI 302 Steel After High-Temperatures Aging","authors":"O. Ben Lenda, H. El ganich, El Madani Saad","doi":"10.26565/2312-4334-2023-4-33","DOIUrl":"https://doi.org/10.26565/2312-4334-2023-4-33","url":null,"abstract":"The structural and mechanical studies of the AISI 302 steel aim to design a correct heat treatment in order to optimize its mechanical properties. In this study, we investigated the influence of temperature and time of aging on the structural and mechanical characteristics of the AISI 302 steel. The steel was aged at temperatures of 1100°C and 1200°C and for times ranging from 0 to 6000 minutes. The structural and mechanical characterization techniques used were the metallurgical microscope, nanoindentation technique, and macro-hardness test. At the microstructural level, an increase in the time or temperature of the aging contributed to an increase in the austenite grains size of AISI 302 steel. This microstructural change led to a decrease in the nanohardness and a drop in the macro-hardness between the unaged and aged conditions of AISI 302 steel.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"46 6","pages":""},"PeriodicalIF":0.4,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139187655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-02DOI: 10.26565/2312-4334-2023-4-41
Muhammad Rameez Mateen, Roohi Zafar, Ahmed Ali Rajput, Shafiq Ur Rehman, M. M. Zahid
In this study, a well-known Weakest Bound Electron Potential Model (WBEPM) was used to determine the exited-state ionization potential of lithium-like elements for different iso-spectrum series such as 1s2 2p1 P1/2, 1s2 3s2 S1/2 , 1s2 3d2 D1/2, 1s2 4s2 S1/2, 1s2 4p2 P1/2, and 1s2 4d2 D1/2 having nuclear charges from Z = 3 to Z = 18. On the other hand, to utilize relativistic correction, Briet-Pauli approximation has also been applied to the ionization potential using a fourth-order polynomial expression in the nuclear charge Z. The deviation within the range of 0.1% has been observed between estimated and experimental values that are quite remarkable. Furthermore, new ionization potentials were proposed for iso-series with Z ranging from 19 to 30.
本研究采用著名的最弱束缚电子势模型(WBEPM)来确定不同等谱系列的类锂元素的出射态电离势,如 1s2 2p1 P1/2、1s2 3s2 S1/2、1s2 3d2 D1/2、1s2 4s2 S1/2、1s2 4p2 P1/2 和 1s2 4d2 D1/2,其核电荷从 Z = 3 到 Z = 18。另一方面,为了利用相对论校正,还使用核电荷 Z 的四阶多项式表达对电离势进行了布里耶-保利近似。此外,还为 Z 范围在 19 到 30 之间的等离子系列提出了新的电离势。
{"title":"Non-Relativistic Calculation of Excited-State Ionization Potentials for Li-Like Ions Using Weakest Bound Electron Potential Model Theory","authors":"Muhammad Rameez Mateen, Roohi Zafar, Ahmed Ali Rajput, Shafiq Ur Rehman, M. M. Zahid","doi":"10.26565/2312-4334-2023-4-41","DOIUrl":"https://doi.org/10.26565/2312-4334-2023-4-41","url":null,"abstract":"In this study, a well-known Weakest Bound Electron Potential Model (WBEPM) was used to determine the exited-state ionization potential of lithium-like elements for different iso-spectrum series such as 1s2 2p1 P1/2, 1s2 3s2 S1/2 , 1s2 3d2 D1/2, 1s2 4s2 S1/2, 1s2 4p2 P1/2, and 1s2 4d2 D1/2 having nuclear charges from Z = 3 to Z = 18. On the other hand, to utilize relativistic correction, Briet-Pauli approximation has also been applied to the ionization potential using a fourth-order polynomial expression in the nuclear charge Z. The deviation within the range of 0.1% has been observed between estimated and experimental values that are quite remarkable. Furthermore, new ionization potentials were proposed for iso-series with Z ranging from 19 to 30.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"72 5","pages":""},"PeriodicalIF":0.4,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139187434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}