{"title":"A Comprehensive Review of Ontologies in the Hydrology Towards Guiding Next Generation Artificial Intelligence Applications","authors":"Ö. Baydaroğlu, S. Yeşilköy, Y. Sermet, I. Demir","doi":"10.3808/jei.202300500","DOIUrl":null,"url":null,"abstract":"Big data generated by remote sensing, ground-based measurements, models and simulations, social media and crowdsourcing, and a wide range of structured and unstructured sources necessitates significant data and knowledge management efforts. Innovations and developments in information technology over the last couple of decades have made data and knowledge management possible for an insurmountable amount of data collected and generated over the last decades. This enabled open knowledge networks to be built that led to new ideas in scientific research and the business world. To design and develop open knowledge networks, ontologies are essential since they form the backbone of conceptualization of a given knowledge domain. A systematic literature review was conducted to examine research involving ontologies related to hydrological processes and water resource management. Ontologies in the hydrology domain support the comprehension, monitoring, and representation of the hydrologic cycle’s complex structure, as well as the predictions of its processes. They contribute to the development of ontology-based information and decision support systems; understanding of environmental and atmospheric phenomena; development of climate and water resiliency concepts; creation of educational tools with artificial intelligence; and strengthening of related cyberinfrastructures. This review provides an explanation of key issues and challenges in ontology development based on hydrologic processes to guide the development of next generation artificial intelligence applications. The study also discusses future research prospects in combination with artificial intelligence and hydroscience.","PeriodicalId":54840,"journal":{"name":"Journal of Environmental Informatics","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3808/jei.202300500","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 4
Abstract
Big data generated by remote sensing, ground-based measurements, models and simulations, social media and crowdsourcing, and a wide range of structured and unstructured sources necessitates significant data and knowledge management efforts. Innovations and developments in information technology over the last couple of decades have made data and knowledge management possible for an insurmountable amount of data collected and generated over the last decades. This enabled open knowledge networks to be built that led to new ideas in scientific research and the business world. To design and develop open knowledge networks, ontologies are essential since they form the backbone of conceptualization of a given knowledge domain. A systematic literature review was conducted to examine research involving ontologies related to hydrological processes and water resource management. Ontologies in the hydrology domain support the comprehension, monitoring, and representation of the hydrologic cycle’s complex structure, as well as the predictions of its processes. They contribute to the development of ontology-based information and decision support systems; understanding of environmental and atmospheric phenomena; development of climate and water resiliency concepts; creation of educational tools with artificial intelligence; and strengthening of related cyberinfrastructures. This review provides an explanation of key issues and challenges in ontology development based on hydrologic processes to guide the development of next generation artificial intelligence applications. The study also discusses future research prospects in combination with artificial intelligence and hydroscience.
期刊介绍:
Journal of Environmental Informatics (JEI) is an international, peer-reviewed, and interdisciplinary publication designed to foster research innovation and discovery on basic science and information technology for addressing various environmental problems. The journal aims to motivate and enhance the integration of science and technology to help develop sustainable solutions that are consensus-oriented, risk-informed, scientifically-based and cost-effective. JEI serves researchers, educators and practitioners who are interested in theoretical and/or applied aspects of environmental science, regardless of disciplinary boundaries. The topics addressed by the journal include:
- Planning of energy, environmental and ecological management systems
- Simulation, optimization and Environmental decision support
- Environmental geomatics - GIS, RS and other spatial information technologies
- Informatics for environmental chemistry and biochemistry
- Environmental applications of functional materials
- Environmental phenomena at atomic, molecular and macromolecular scales
- Modeling of chemical, biological and environmental processes
- Modeling of biotechnological systems for enhanced pollution mitigation
- Computer graphics and visualization for environmental decision support
- Artificial intelligence and expert systems for environmental applications
- Environmental statistics and risk analysis
- Climate modeling, downscaling, impact assessment, and adaptation planning
- Other areas of environmental systems science and information technology.