Methods of Analysis of Amazon Product Reviews and Rating Prediction

{"title":"Methods of Analysis of Amazon Product Reviews and Rating Prediction","authors":"","doi":"10.23977/tracam.2023.030102","DOIUrl":null,"url":null,"abstract":"Online shopping reviews have become an important data source for merchants to make smarter decisions in product development, operations, and marketing. In this paper, we propose a modeling strategy to optimize data analysis and processing of online shopping review data. We address four main problems: identifying commonly used words in positive, negative, and helpful reviews, predicting the products to which the comments refer using semantic analysis, predicting the product rating based on the comments using sentiment analysis, and proposing ways to distinguish human comments from machine-generated ones. Additionally, we provide a recommendation letter to customers on how to read product reviews.","PeriodicalId":484637,"journal":{"name":"Transactions on Computational and Applied Mathematics","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23977/tracam.2023.030102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Online shopping reviews have become an important data source for merchants to make smarter decisions in product development, operations, and marketing. In this paper, we propose a modeling strategy to optimize data analysis and processing of online shopping review data. We address four main problems: identifying commonly used words in positive, negative, and helpful reviews, predicting the products to which the comments refer using semantic analysis, predicting the product rating based on the comments using sentiment analysis, and proposing ways to distinguish human comments from machine-generated ones. Additionally, we provide a recommendation letter to customers on how to read product reviews.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
亚马逊产品评论分析与评级预测方法
在线购物评论已经成为商家在产品开发、运营和营销方面做出更明智决策的重要数据源。在本文中,我们提出了一种建模策略来优化在线购物评论数据的数据分析和处理。我们解决了四个主要问题:识别正面、负面和有用评论中的常用词汇,使用语义分析预测评论所指的产品,使用情感分析根据评论预测产品评级,并提出区分人类评论和机器生成评论的方法。此外,我们还向客户提供一封关于如何阅读产品评论的推荐信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The homology groups of small cover on a triangular prism and its number of characteristic functions Methods of Analysis of Amazon Product Reviews and Rating Prediction Mathematical Analysis of the Relationship between College Entrance Exam Scores and Information and Computing Science Discipline Performance in a Chinese University The Influence and Development Trends of Mathematics in Geophysical Exploration on Earth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1