Parallel Trajectory Training of Recurrent Neural Network Controllers With Levenberg–Marquardt and Forward Accumulation Through Time in Closed-Loop Control Systems

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Sustainable Computing Pub Date : 2023-11-06 DOI:10.1109/TSUSC.2023.3330573
Xingang Fu;Jordan Sturtz;Eduardo Alonso;Rajab Challoo;Letu Qingge
{"title":"Parallel Trajectory Training of Recurrent Neural Network Controllers With Levenberg–Marquardt and Forward Accumulation Through Time in Closed-Loop Control Systems","authors":"Xingang Fu;Jordan Sturtz;Eduardo Alonso;Rajab Challoo;Letu Qingge","doi":"10.1109/TSUSC.2023.3330573","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel parallel trajectory mechanism that combines Levenberg-Marquardt and Forward Accumulation Through Time algorithms to train a recurrent neural network controller in a closed-loop control system by distributing the calculation of trajectories across Central Processing Unit (CPU) cores/workers depending on the computing platforms, computing program languages, and software packages available. Without loss of generality, the recurrent neural network controller of a grid-connected converter for solar integration to a power system was selected as the benchmark test closed-loop control system. Two software packages were developed in Matlab and C++ to verify and demonstrate the efficiency of the proposed parallel training method. The training of the deep neural network controller was migrated from a single workstation to both cloud computing platforms and High-Performance Computing clusters. The training results show excellent speed-up performance, which significantly reduces the training time for a large number of trajectories with high sampling frequency, and further demonstrates the effectiveness and scalability of the proposed parallel mechanism.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 2","pages":"222-229"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10310165/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel parallel trajectory mechanism that combines Levenberg-Marquardt and Forward Accumulation Through Time algorithms to train a recurrent neural network controller in a closed-loop control system by distributing the calculation of trajectories across Central Processing Unit (CPU) cores/workers depending on the computing platforms, computing program languages, and software packages available. Without loss of generality, the recurrent neural network controller of a grid-connected converter for solar integration to a power system was selected as the benchmark test closed-loop control system. Two software packages were developed in Matlab and C++ to verify and demonstrate the efficiency of the proposed parallel training method. The training of the deep neural network controller was migrated from a single workstation to both cloud computing platforms and High-Performance Computing clusters. The training results show excellent speed-up performance, which significantly reduces the training time for a large number of trajectories with high sampling frequency, and further demonstrates the effectiveness and scalability of the proposed parallel mechanism.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在闭环控制系统中利用 Levenberg-Marquardt 和时间前向累积对递归神经网络控制器进行并行轨迹训练
本文介绍了一种新颖的并行轨迹机制,该机制结合了 Levenberg-Marquardt 算法和时间前向累加算法,可在闭环控制系统中训练递归神经网络控制器,方法是根据计算平台、计算程序语言和可用软件包的不同,将轨迹计算分配到中央处理器(CPU)内核/处理器上。在不失一般性的前提下,我们选择了用于太阳能并入电力系统的并网转换器的递归神经网络控制器作为闭环控制系统的基准测试。为了验证和展示所提出的并行训练方法的效率,我们用 Matlab 和 C++ 开发了两个软件包。深度神经网络控制器的训练从单个工作站迁移到云计算平台和高性能计算集群。训练结果显示了优异的加速性能,在大量高采样频率轨迹的情况下显著缩短了训练时间,进一步证明了所提出的并行机制的有效性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
期刊最新文献
Editorial Dynamic Event-Triggered State Estimation for Power Harmonics With Quantization Effects: A Zonotopic Set-Membership Approach 2024 Reviewers List Deadline-Aware Cost and Energy Efficient Offloading in Mobile Edge Computing Impacts of Increasing Temperature and Relative Humidity in Air-Cooled Tropical Data Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1