Construction and experimental verification of on-board weighing prediction model based on three-level linear transfer

IF 0.5 4区 工程技术 Q4 ENGINEERING, MECHANICAL International Journal of Heavy Vehicle Systems Pub Date : 2023-01-01 DOI:10.1504/ijhvs.2023.134709
Huanbo Qiao, Hongxun Fu, Senyu Bi, Laiyun Ku, Yan Wang
{"title":"Construction and experimental verification of on-board weighing prediction model based on three-level linear transfer","authors":"Huanbo Qiao, Hongxun Fu, Senyu Bi, Laiyun Ku, Yan Wang","doi":"10.1504/ijhvs.2023.134709","DOIUrl":null,"url":null,"abstract":"In order to improve the accuracy of on-board weighing system, a construction method of on-board weighing prediction model based on three-level linear transfer is proposed. Through the finite element analysis of different types of leaf springs, the linear relationship between load and deformation in the vertical direction of leaf springs is verified. Based on the three-level linear transfer relationship of leaf spring, soft spring and parallel beam sensor, the relationship between bearing mass and output mass is established, the bearing mass of a single leaf spring is calculated, and then the whole vehicle weighing prediction model is constructed. The weighing prediction model is solved and verified through two different test schemes. The results show that the overall error of the on-board weighing prediction model based on the three-level linear transfer method can be controlled within 1%, which meets the requirement of on-board weighing error not higher than 3% in JT/T 794-2019.","PeriodicalId":54958,"journal":{"name":"International Journal of Heavy Vehicle Systems","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heavy Vehicle Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijhvs.2023.134709","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to improve the accuracy of on-board weighing system, a construction method of on-board weighing prediction model based on three-level linear transfer is proposed. Through the finite element analysis of different types of leaf springs, the linear relationship between load and deformation in the vertical direction of leaf springs is verified. Based on the three-level linear transfer relationship of leaf spring, soft spring and parallel beam sensor, the relationship between bearing mass and output mass is established, the bearing mass of a single leaf spring is calculated, and then the whole vehicle weighing prediction model is constructed. The weighing prediction model is solved and verified through two different test schemes. The results show that the overall error of the on-board weighing prediction model based on the three-level linear transfer method can be controlled within 1%, which meets the requirement of on-board weighing error not higher than 3% in JT/T 794-2019.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于三级线性传递的车载称重预测模型构建与实验验证
为了提高车载称重系统的精度,提出了一种基于三级线性传递的车载称重预测模型的构建方法。通过对不同类型钢板弹簧的有限元分析,验证了钢板弹簧在垂直方向上的载荷与变形之间的线性关系。基于板簧、软弹簧和平行梁传感器的三级线性传递关系,建立了承载质量与输出质量之间的关系,计算了单个板簧的承载质量,进而构建了整车称重预测模型。通过两种不同的试验方案对称重预测模型进行了求解和验证。结果表明,基于三级线性传递法的车载称重预测模型总体误差可控制在1%以内,满足JT/T 794-2019中车载称重误差不高于3%的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Heavy Vehicle Systems
International Journal of Heavy Vehicle Systems 工程技术-工程:机械
CiteScore
1.30
自引率
0.00%
发文量
17
审稿时长
9 months
期刊介绍: IJHVS provides an authoritative source of information and an international forum in the field of on/off road heavy vehicle systems, including buses. It is a highly professional and refereed journal which forms part of the proceedings of the International Association for Vehicle Design. IAVD is an independent, non-profit, learned society which provides a forum for professionals in both industry and academic institutions to meet, exchange ideas and disseminate knowledge in the field of automotive engineering, technology, and management.
期刊最新文献
Stress analysis of an air tube bracket on a heavy-duty commercial vehicle's chassis An integrated approach for scheduling electric vehicles and distributed generators in a smart distribution system Operational charging methods for electric buses: a case study for BRT Istanbul Anti-rollover control of heavy-duty dump truck with distributed model predictive control Gyroscopic suspension for a heavy vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1