{"title":"Black Box-Based Incremental Reduced-Order Modeling Framework of Inverter-Based Power Systems","authors":"Weihua Zhou;Jef Beerten","doi":"10.1109/OJIES.2023.3330894","DOIUrl":null,"url":null,"abstract":"Due to the capability to perform participation factor analysis and oscillation origin location, the state–space model (SSM)-based eigenvalue method has been widely used for stability assessment of inverter-penetrated power systems. However, possible internal confidentiality of inverters impedes the derivation of their SSMs. In addition, conventional derivation procedure of system SSM can be tedious when complicated transmission network topology and various transmission cables are involved, which may result in a high-order system SSM. To this end, this article presents a black box-based incremental reduced-order modeling framework. The reduced-order SSMs of the inverters and transmission cables are extracted from their \n<inline-formula><tex-math>$dq$</tex-math></inline-formula>\n-domain admittance frequency responses and \n<inline-formula><tex-math>$abc$</tex-math></inline-formula>\n-domain impedance frequency responses, respectively, by the matrix fitting algorithm. Then, the SSM operators proposed in this article recursively assemble the components' fitted SSMs in the similar manner as the impedance model operator-based recursive components' impedance aggregation, while preserving the dynamics of individual components. Simulation results show that the presented state–space modeling framework can properly identify the state–space models of black-box devices at component modeling stage, simplify assembling procedure at subsystems/components integration stage, and release computational burden at system participation factor analysis stage.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"4 ","pages":"506-518"},"PeriodicalIF":5.2000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10310269","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10310269/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the capability to perform participation factor analysis and oscillation origin location, the state–space model (SSM)-based eigenvalue method has been widely used for stability assessment of inverter-penetrated power systems. However, possible internal confidentiality of inverters impedes the derivation of their SSMs. In addition, conventional derivation procedure of system SSM can be tedious when complicated transmission network topology and various transmission cables are involved, which may result in a high-order system SSM. To this end, this article presents a black box-based incremental reduced-order modeling framework. The reduced-order SSMs of the inverters and transmission cables are extracted from their
$dq$
-domain admittance frequency responses and
$abc$
-domain impedance frequency responses, respectively, by the matrix fitting algorithm. Then, the SSM operators proposed in this article recursively assemble the components' fitted SSMs in the similar manner as the impedance model operator-based recursive components' impedance aggregation, while preserving the dynamics of individual components. Simulation results show that the presented state–space modeling framework can properly identify the state–space models of black-box devices at component modeling stage, simplify assembling procedure at subsystems/components integration stage, and release computational burden at system participation factor analysis stage.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.