{"title":"Nature's Contributions to People (NCPs) and biodiversity hotspots: a step towards multifunctionality of conservation areas in Peru","authors":"Maricel Móstiga , Dolors Armenteras , Jordi Vayreda , Javier Retana","doi":"10.1016/j.pecon.2023.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid land use change in tropical forests is a severe threat to Earth nature’s contributions to people (NCPs) and biodiversity. Effectively conserving ecosystems is a global target that requires clearly prioritizing areas that provide multiple benefits. The goal of this study is to identify potential NCPs and biodiversity hotspots of forest and evaluate their single and multiple representativeness within the Protection Areas (PA) in Peru. To do so we (1) analyzed the spatial distribution of three NCPs indicators at national and regional scales (carbon stock and sequestration in two components aboveground carbon density and soil organic carbon stock, water balance and erosion control) and one biodiversity indicator (biodiversity relative priority index) and identified their hotspots areas; (2) identified the single and overlapped hotspot areas within PAs; (3) identified synergies and trade-off among indicators. Our analysis shows that the distribution of NCPs and biodiversity varied across regions. Most hotspot areas were in the High and Not Flooded Rainforest regions due to favorable conditions for vegetation and lower levels of anthropic transformation. We found that the current PAs inadequately protect a significant percentage of hotspots, with few overlap areas. Synergies may shift to trade-offs at different scales or among regions, meaning a conservation plan solely focused on biodiversity cannot adequately preserve NCPs. Furthermore, multiple hotspot areas cannot be conserved in a single location, emphasizing the importance of hotspot identification as the first step towards achieving multifunctional PAs. Our analysis offers recommendations for achieving multifunctional PAs that can apply to megadiverse countries.</p></div>","PeriodicalId":56034,"journal":{"name":"Perspectives in Ecology and Conservation","volume":"21 4","pages":"Pages 329-339"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2530064423000627/pdfft?md5=7d4172e7a91fcecd80f420e17504e807&pid=1-s2.0-S2530064423000627-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perspectives in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2530064423000627","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid land use change in tropical forests is a severe threat to Earth nature’s contributions to people (NCPs) and biodiversity. Effectively conserving ecosystems is a global target that requires clearly prioritizing areas that provide multiple benefits. The goal of this study is to identify potential NCPs and biodiversity hotspots of forest and evaluate their single and multiple representativeness within the Protection Areas (PA) in Peru. To do so we (1) analyzed the spatial distribution of three NCPs indicators at national and regional scales (carbon stock and sequestration in two components aboveground carbon density and soil organic carbon stock, water balance and erosion control) and one biodiversity indicator (biodiversity relative priority index) and identified their hotspots areas; (2) identified the single and overlapped hotspot areas within PAs; (3) identified synergies and trade-off among indicators. Our analysis shows that the distribution of NCPs and biodiversity varied across regions. Most hotspot areas were in the High and Not Flooded Rainforest regions due to favorable conditions for vegetation and lower levels of anthropic transformation. We found that the current PAs inadequately protect a significant percentage of hotspots, with few overlap areas. Synergies may shift to trade-offs at different scales or among regions, meaning a conservation plan solely focused on biodiversity cannot adequately preserve NCPs. Furthermore, multiple hotspot areas cannot be conserved in a single location, emphasizing the importance of hotspot identification as the first step towards achieving multifunctional PAs. Our analysis offers recommendations for achieving multifunctional PAs that can apply to megadiverse countries.
期刊介绍:
Perspectives in Ecology and Conservation (PECON) is a scientific journal devoted to improving theoretical and conceptual aspects of conservation science. It has the main purpose of communicating new research and advances to different actors of society, including researchers, conservationists, practitioners, and policymakers. Perspectives in Ecology and Conservation publishes original papers on biodiversity conservation and restoration, on the main drivers affecting native ecosystems, and on nature’s benefits to people and human wellbeing. This scope includes studies on biodiversity patterns, the effects of habitat loss, fragmentation, biological invasion and climate change on biodiversity, conservation genetics, spatial conservation planning, ecosystem management, ecosystem services, sustainability and resilience of socio-ecological systems, conservation policy, among others.