Pt nanoparticles supported LaCoO3 as highly efficient catalysts for photo-thermal catalytic CO2 methanation

Luxue Wang , Yuan Qi , Zhengyi Yang , Hao Wu , Jiurong Liu , Yunxiang Tang , Fenglong Wang
{"title":"Pt nanoparticles supported LaCoO3 as highly efficient catalysts for photo-thermal catalytic CO2 methanation","authors":"Luxue Wang ,&nbsp;Yuan Qi ,&nbsp;Zhengyi Yang ,&nbsp;Hao Wu ,&nbsp;Jiurong Liu ,&nbsp;Yunxiang Tang ,&nbsp;Fenglong Wang","doi":"10.1016/j.gerr.2023.100036","DOIUrl":null,"url":null,"abstract":"<div><p>Photo-thermal catalytic CO<sub>2</sub> hydrogenation to value-added products is considered a viable strategy for CO<sub>2</sub> conversion, whereas the unsatisfactory selectivity and conversion efficiency hinder its practical applications. Herein, Pt nanoparticles supported on LaCoO<sub>3</sub> with different loadings were prepared for photo-thermal catalytic CO<sub>2</sub> hydrogenation. Transmission Electron Microscope (TEM) images revealed that the Pt nanoparticles (about 2∼4 nm) were evenly dispersed on the surface of rhomboid-phased LaCoO<sub>3</sub> supports. X-ray photoelectron spectroscopy (XPS) studies showed that in the composited catalysts, electron transfer from LaCoO<sub>3</sub> to Pt occurred, suggesting a strong interaction between Pt and LaCoO<sub>3</sub>. In result, 0.6 Pt/LaCoO<sub>3</sub> showed a remarkable CH<sub>4</sub> production rate of 119.8 mmol g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup> with 87% selectivity at 250°C under visible light irradiation. Additionally, the <em>in situ</em> diffuse reflectance infrared Fourier transformations spectroscopy (DRIFTS) indicated that formate is the main intermediate species in the photo-thermal catalytic CO<sub>2</sub> hydrogenation process and illumination could promote the conversion of intermediate species without changing the reaction pathway, thus increasing the yield of CH<sub>4</sub>. Given that the catalyst preparation approaches could be easily scaled up and the conversion efficiency of CO<sub>2</sub> is satisfactory, it is confident that this research will offer valuable guidance for the future industrialization of CO<sub>2</sub> conversion.</p></div>","PeriodicalId":100597,"journal":{"name":"Green Energy and Resources","volume":"1 4","pages":"Article 100036"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949720523000334/pdfft?md5=27954e840ccc0dbafe527c7c9ae3feeb&pid=1-s2.0-S2949720523000334-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949720523000334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Photo-thermal catalytic CO2 hydrogenation to value-added products is considered a viable strategy for CO2 conversion, whereas the unsatisfactory selectivity and conversion efficiency hinder its practical applications. Herein, Pt nanoparticles supported on LaCoO3 with different loadings were prepared for photo-thermal catalytic CO2 hydrogenation. Transmission Electron Microscope (TEM) images revealed that the Pt nanoparticles (about 2∼4 nm) were evenly dispersed on the surface of rhomboid-phased LaCoO3 supports. X-ray photoelectron spectroscopy (XPS) studies showed that in the composited catalysts, electron transfer from LaCoO3 to Pt occurred, suggesting a strong interaction between Pt and LaCoO3. In result, 0.6 Pt/LaCoO3 showed a remarkable CH4 production rate of 119.8 mmol gcat−1 h−1 with 87% selectivity at 250°C under visible light irradiation. Additionally, the in situ diffuse reflectance infrared Fourier transformations spectroscopy (DRIFTS) indicated that formate is the main intermediate species in the photo-thermal catalytic CO2 hydrogenation process and illumination could promote the conversion of intermediate species without changing the reaction pathway, thus increasing the yield of CH4. Given that the catalyst preparation approaches could be easily scaled up and the conversion efficiency of CO2 is satisfactory, it is confident that this research will offer valuable guidance for the future industrialization of CO2 conversion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pt纳米颗粒负载LaCoO3作为光热催化CO2甲烷化的高效催化剂
光热催化CO2加氢制高附加值产品被认为是一种可行的CO2转化策略,但其选择性和转化效率不理想阻碍了其实际应用。本文制备了不同负载的LaCoO3负载Pt纳米颗粒,用于光热催化CO2加氢。透射电镜(TEM)显示,Pt纳米颗粒(约2 ~ 4 nm)均匀分布在菱形相LaCoO3载体表面。x射线光电子能谱(XPS)研究表明,复合催化剂中发生了从LaCoO3向Pt的电子转移,表明Pt与LaCoO3之间存在较强的相互作用。结果表明,在250℃可见光照射下,0.6 Pt/LaCoO3的CH4产率为119.8 mmol gcat-1 h-1,选择性为87%。此外,原位漫反射红外傅里叶变换光谱(DRIFTS)表明,甲酸盐是光热催化CO2加氢过程的主要中间物质,光照可以在不改变反应途径的情况下促进中间物质的转化,从而提高CH4的产率。由于催化剂制备方法易于扩大规模,并且CO2的转化效率令人满意,因此相信本研究将为未来CO2转化的工业化提供有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parametric study of the decomposition of methane for COx-free H2 and high valued carbon using Ni-based catalyst via machine-learning simulation Potentials and effects of electricity cogeneration via ORC integration in small-scale biomass district heating system Optimal control strategy based on artificial intelligence applied to a continuous dark fermentation reactor for energy recovery from organic wastes Using machine learning methods for long-term technical and economic evaluation of wind power plants Investigation of highly efficient CO2 hydrogenation at ambient conditions using dielectric barrier discharge plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1