{"title":"Optimization over the Pareto front of nonconvex multi-objective optimal control problems","authors":"C. Yalçın Kaya, Helmut Maurer","doi":"10.1007/s10589-023-00535-7","DOIUrl":null,"url":null,"abstract":"Abstract Simultaneous optimization of multiple objective functions results in a set of trade-off, or Pareto, solutions. Choosing a, in some sense, best solution in this set is in general a challenging task: In the case of three or more objectives the Pareto front is usually difficult to view, if not impossible, and even in the case of just two objectives constructing the whole Pareto front so as to visually inspect it might be very costly. Therefore, optimization over the Pareto (or efficient) set has been an active area of research. Although there is a wealth of literature involving finite dimensional optimization problems in this area, there is a lack of problem formulation and numerical methods for optimal control problems, except for the convex case. In this paper, we formulate the problem of optimizing over the Pareto front of nonconvex constrained and time-delayed optimal control problems as a bi-level optimization problem. Motivated by existing solution differentiability results, we propose an algorithm incorporating (i) the Chebyshev scalarization, (ii) a concept of the essential interval of weights, and (iii) the simple but effective bisection method, for optimal control problems with two objectives. We illustrate the working of the algorithm on two example problems involving an electric circuit and treatment of tuberculosis and discuss future lines of research for new computational methods.","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"27 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10589-023-00535-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Simultaneous optimization of multiple objective functions results in a set of trade-off, or Pareto, solutions. Choosing a, in some sense, best solution in this set is in general a challenging task: In the case of three or more objectives the Pareto front is usually difficult to view, if not impossible, and even in the case of just two objectives constructing the whole Pareto front so as to visually inspect it might be very costly. Therefore, optimization over the Pareto (or efficient) set has been an active area of research. Although there is a wealth of literature involving finite dimensional optimization problems in this area, there is a lack of problem formulation and numerical methods for optimal control problems, except for the convex case. In this paper, we formulate the problem of optimizing over the Pareto front of nonconvex constrained and time-delayed optimal control problems as a bi-level optimization problem. Motivated by existing solution differentiability results, we propose an algorithm incorporating (i) the Chebyshev scalarization, (ii) a concept of the essential interval of weights, and (iii) the simple but effective bisection method, for optimal control problems with two objectives. We illustrate the working of the algorithm on two example problems involving an electric circuit and treatment of tuberculosis and discuss future lines of research for new computational methods.
期刊介绍:
Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome.
Topics of interest include, but are not limited to the following:
Large Scale Optimization,
Unconstrained Optimization,
Linear Programming,
Quadratic Programming Complementarity Problems, and Variational Inequalities,
Constrained Optimization,
Nondifferentiable Optimization,
Integer Programming,
Combinatorial Optimization,
Stochastic Optimization,
Multiobjective Optimization,
Network Optimization,
Complexity Theory,
Approximations and Error Analysis,
Parametric Programming and Sensitivity Analysis,
Parallel Computing, Distributed Computing, and Vector Processing,
Software, Benchmarks, Numerical Experimentation and Comparisons,
Modelling Languages and Systems for Optimization,
Automatic Differentiation,
Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research,
Transportation, Economics, Communications, Manufacturing, and Management Science.