In this paper, we seek a new modification way to ensure the positiveness of the conjugate parameter and, based on the Dai-Yuan (DY) method in the vector setting, propose an associated family of conjugate gradient (CG) methods with guaranteed descent for solving unconstrained vector optimization problems. Several special members of the family are analyzed and the (sufficient) descent condition is established for them (in the vector sense). Under mild conditions, a general convergence result for the CG methods with specific parameters is presented, which, in particular, covers the global convergence of the aforementioned members. Furthermore, for the purpose of comparison, we then consider the direct extension versions of some Dai-Yuan type methods which are obtained by modifying the DY method of the scalar case. These vector extensions can retrieve the classical parameters in the scalar minimization case and their descent property and global convergence are also studied under mild assumptions. Finally, numerical experiments are given to illustrate the practical behavior of all proposed methods.
在本文中,我们寻求了一种新的修正方法来确保共轭参数的正向性,并基于矢量环境下的戴元(DY)方法,提出了一个相关的共轭梯度(CG)方法族,该方法具有保证下降的特性,可用于求解无约束矢量优化问题。分析了该族的几个特殊成员,并为它们建立了(向量意义上的)(充分)下降条件。在温和条件下,提出了具有特定参数的 CG 方法的一般收敛结果,特别是涵盖了上述成员的全局收敛性。此外,为了进行比较,我们还考虑了一些戴元类方法的直接扩展版本,它们是通过修改标量情况下的 DY 方法而获得的。这些矢量扩展方法可以检索标量最小化情况下的经典参数,并在温和的假设条件下研究了它们的下降特性和全局收敛性。最后,还给出了数值实验来说明所有建议方法的实用性。
{"title":"A family of conjugate gradient methods with guaranteed positiveness and descent for vector optimization","authors":"Qing-Rui He, Sheng-Jie Li, Bo-Ya Zhang, Chun-Rong Chen","doi":"10.1007/s10589-024-00609-0","DOIUrl":"https://doi.org/10.1007/s10589-024-00609-0","url":null,"abstract":"<p>In this paper, we seek a new modification way to ensure the positiveness of the conjugate parameter and, based on the Dai-Yuan (DY) method in the vector setting, propose an associated family of conjugate gradient (CG) methods with guaranteed descent for solving unconstrained vector optimization problems. Several special members of the family are analyzed and the (sufficient) descent condition is established for them (in the vector sense). Under mild conditions, a general convergence result for the CG methods with specific parameters is presented, which, in particular, covers the global convergence of the aforementioned members. Furthermore, for the purpose of comparison, we then consider the direct extension versions of some Dai-Yuan type methods which are obtained by modifying the DY method of the scalar case. These vector extensions can retrieve the classical parameters in the scalar minimization case and their descent property and global convergence are also studied under mild assumptions. Finally, numerical experiments are given to illustrate the practical behavior of all proposed methods.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"47 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1007/s10589-024-00606-3
N. Vater, A. Borzì
The development and convergence analysis of a quasi-Newton method for the solution of systems of nonlinear underdetermined equations is investigated. These equations arise in many application fields, e.g., supervised learning of large overparameterised neural networks, which require the development of efficient methods with guaranteed convergence. In this paper, a new approach for the computation of the Moore–Penrose inverse of the approximate Jacobian coming from the Broyden update is presented and a semi-local convergence result for a damped quasi-Newton method is proved. The theoretical results are illustrated in detail for the case of systems of multidimensional quadratic equations, and validated in the context of eigenvalue problems and supervised learning of overparameterised neural networks.
{"title":"Convergence of a quasi-Newton method for solving systems of nonlinear underdetermined equations","authors":"N. Vater, A. Borzì","doi":"10.1007/s10589-024-00606-3","DOIUrl":"https://doi.org/10.1007/s10589-024-00606-3","url":null,"abstract":"<p>The development and convergence analysis of a quasi-Newton method for the solution of systems of nonlinear underdetermined equations is investigated. These equations arise in many application fields, e.g., supervised learning of large overparameterised neural networks, which require the development of efficient methods with guaranteed convergence. In this paper, a new approach for the computation of the Moore–Penrose inverse of the approximate Jacobian coming from the Broyden update is presented and a semi-local convergence result for a damped quasi-Newton method is proved. The theoretical results are illustrated in detail for the case of systems of multidimensional quadratic equations, and validated in the context of eigenvalue problems and supervised learning of overparameterised neural networks.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"91 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1007/s10589-024-00605-4
G. A. Carrizo, N. S. Fazzio, M. D. Sánchez, M. L. Schuverdt
Based on the recently introduced Scaled Positive Approximate Karush–Kuhn–Tucker condition for single objective problems, we derive a sequential necessary optimality condition for multiobjective problems with equality and inequality constraints as well as additional abstract set constraints. These necessary sequential optimality conditions for multiobjective problems are subject to the same requirements as ordinary (pointwise) optimization conditions: we show that the updated Scaled Positive Approximate Karush–Kuhn–Tucker condition is necessary for a local weak Pareto point to the problem. Furthermore, we propose a variant of the classical Augmented Lagrangian method for multiobjective problems. Our theoretical framework does not require any scalarization. We also discuss the convergence properties of our algorithm with regard to feasibility and global optimality without any convexity assumption. Finally, some numerical results are given to illustrate the practical viability of the method.
{"title":"Scaled-PAKKT sequential optimality condition for multiobjective problems and its application to an Augmented Lagrangian method","authors":"G. A. Carrizo, N. S. Fazzio, M. D. Sánchez, M. L. Schuverdt","doi":"10.1007/s10589-024-00605-4","DOIUrl":"https://doi.org/10.1007/s10589-024-00605-4","url":null,"abstract":"<p>Based on the recently introduced Scaled Positive Approximate Karush–Kuhn–Tucker condition for single objective problems, we derive a sequential necessary optimality condition for multiobjective problems with equality and inequality constraints as well as additional abstract set constraints. These necessary sequential optimality conditions for multiobjective problems are subject to the same requirements as ordinary (pointwise) optimization conditions: we show that the updated Scaled Positive Approximate Karush–Kuhn–Tucker condition is necessary for a local weak Pareto point to the problem. Furthermore, we propose a variant of the classical Augmented Lagrangian method for multiobjective problems. Our theoretical framework does not require any scalarization. We also discuss the convergence properties of our algorithm with regard to feasibility and global optimality without any convexity assumption. Finally, some numerical results are given to illustrate the practical viability of the method.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"59 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1007/s10589-024-00603-6
Chuan He, Heng Huang, Zhaosong Lu
In this paper we consider finding an approximate second-order stationary point (SOSP) of general nonconvex conic optimization that minimizes a twice differentiable function subject to nonlinear equality constraints and also a convex conic constraint. In particular, we propose a Newton-conjugate gradient (Newton-CG) based barrier-augmented Lagrangian method for finding an approximate SOSP of this problem. Under some mild assumptions, we show that our method enjoys a total inner iteration complexity of ({widetilde{{{,mathrm{mathcal {O}},}}}}(epsilon ^{-11/2})) and an operation complexity of ({widetilde{{{,mathrm{mathcal {O}},}}}}(epsilon ^{-11/2}min {n,epsilon ^{-5/4}})) for finding an ((epsilon ,sqrt{epsilon }))-SOSP of general nonconvex conic optimization with high probability. Moreover, under a constraint qualification, these complexity bounds are improved to ({widetilde{{{,mathrm{mathcal {O}},}}}}(epsilon ^{-7/2})) and ({widetilde{{{,mathrm{mathcal {O}},}}}}(epsilon ^{-7/2}min {n,epsilon ^{-3/4}})), respectively. To the best of our knowledge, this is the first study on the complexity of finding an approximate SOSP of general nonconvex conic optimization. Preliminary numerical results are presented to demonstrate superiority of the proposed method over first-order methods in terms of solution quality.
{"title":"A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization","authors":"Chuan He, Heng Huang, Zhaosong Lu","doi":"10.1007/s10589-024-00603-6","DOIUrl":"https://doi.org/10.1007/s10589-024-00603-6","url":null,"abstract":"<p>In this paper we consider finding an approximate second-order stationary point (SOSP) of general nonconvex conic optimization that minimizes a twice differentiable function subject to nonlinear equality constraints and also a convex conic constraint. In particular, we propose a Newton-conjugate gradient (Newton-CG) based barrier-augmented Lagrangian method for finding an approximate SOSP of this problem. Under some mild assumptions, we show that our method enjoys a total inner iteration complexity of <span>({widetilde{{{,mathrm{mathcal {O}},}}}}(epsilon ^{-11/2}))</span> and an operation complexity of <span>({widetilde{{{,mathrm{mathcal {O}},}}}}(epsilon ^{-11/2}min {n,epsilon ^{-5/4}}))</span> for finding an <span>((epsilon ,sqrt{epsilon }))</span>-SOSP of general nonconvex conic optimization with high probability. Moreover, under a constraint qualification, these complexity bounds are improved to <span>({widetilde{{{,mathrm{mathcal {O}},}}}}(epsilon ^{-7/2}))</span> and <span>({widetilde{{{,mathrm{mathcal {O}},}}}}(epsilon ^{-7/2}min {n,epsilon ^{-3/4}}))</span>, respectively. To the best of our knowledge, this is the first study on the complexity of finding an approximate SOSP of general nonconvex conic optimization. Preliminary numerical results are presented to demonstrate superiority of the proposed method over first-order methods in terms of solution quality.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"165 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1007/s10589-024-00602-7
Bo Rao, Liu Yang, Suhan Zhong, Guangming Zhou
This paper proposes a robust approximation method for solving chance constrained optimization (CCO) of polynomials. Assume the CCO is defined with an individual chance constraint that is affine in the decision variables. We construct a robust approximation by replacing the chance constraint with a robust constraint over an uncertainty set. When the objective function is linear or SOS-convex, the robust approximation can be equivalently transformed into linear conic optimization. Semidefinite relaxation algorithms are proposed to solve these linear conic transformations globally and their convergent properties are studied. We also introduce a heuristic method to find efficient uncertainty sets such that optimizers of the robust approximation are feasible to the original problem. Numerical experiments are given to show the efficiency of our method.
{"title":"Robust approximation of chance constrained optimization with polynomial perturbation","authors":"Bo Rao, Liu Yang, Suhan Zhong, Guangming Zhou","doi":"10.1007/s10589-024-00602-7","DOIUrl":"https://doi.org/10.1007/s10589-024-00602-7","url":null,"abstract":"<p>This paper proposes a robust approximation method for solving chance constrained optimization (CCO) of polynomials. Assume the CCO is defined with an individual chance constraint that is affine in the decision variables. We construct a robust approximation by replacing the chance constraint with a robust constraint over an uncertainty set. When the objective function is linear or SOS-convex, the robust approximation can be equivalently transformed into linear conic optimization. Semidefinite relaxation algorithms are proposed to solve these linear conic transformations globally and their convergent properties are studied. We also introduce a heuristic method to find efficient uncertainty sets such that optimizers of the robust approximation are feasible to the original problem. Numerical experiments are given to show the efficiency of our method.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"42 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-17DOI: 10.1007/s10589-024-00601-8
Xueli Bai, Dong-Hui Li, Lei Wu, Jiefeng Xu
The Perron–Frobenius theorem says that the spectral radius of a weakly irreducible nonnegative tensor is the unique positive eigenvalue corresponding to a positive eigenvector. With this fact in mind, the purpose of this paper is to find the spectral radius and its corresponding positive eigenvector of a weakly irreducible nonnegative symmetric tensor. By transforming the eigenvalue problem into an equivalent problem of minimizing a concave function on a closed convex set, we derive a simpler and cheaper iterative method called power-like method, which is well-defined. Furthermore, we show that both sequences of the eigenvalue estimates and the eigenvector evaluations generated by the power-like method Q-linearly converge to the spectral radius and its corresponding eigenvector, respectively. To accelerate the method, we introduce a line search technique. The improved method retains the same convergence property as the original version. Plentiful numerical results show that the improved method performs quite well.
{"title":"A power-like method for finding the spectral radius of a weakly irreducible nonnegative symmetric tensor","authors":"Xueli Bai, Dong-Hui Li, Lei Wu, Jiefeng Xu","doi":"10.1007/s10589-024-00601-8","DOIUrl":"https://doi.org/10.1007/s10589-024-00601-8","url":null,"abstract":"<p>The Perron–Frobenius theorem says that the spectral radius of a weakly irreducible nonnegative tensor is the unique positive eigenvalue corresponding to a positive eigenvector. With this fact in mind, the purpose of this paper is to find the spectral radius and its corresponding positive eigenvector of a weakly irreducible nonnegative symmetric tensor. By transforming the eigenvalue problem into an equivalent problem of minimizing a concave function on a closed convex set, we derive a simpler and cheaper iterative method called power-like method, which is well-defined. Furthermore, we show that both sequences of the eigenvalue estimates and the eigenvector evaluations generated by the power-like method <i>Q</i>-linearly converge to the spectral radius and its corresponding eigenvector, respectively. To accelerate the method, we introduce a line search technique. The improved method retains the same convergence property as the original version. Plentiful numerical results show that the improved method performs quite well.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"46 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-16DOI: 10.1007/s10589-024-00600-9
Simeon vom Dahl, Christian Kanzow
In this paper, we introduce an inexact regularized proximal Newton method (IRPNM) that does not require any line search. The method is designed to minimize the sum of a twice continuously differentiable function f and a convex (possibly non-smooth and extended-valued) function (varphi ). Instead of controlling a step size by a line search procedure, we update the regularization parameter in a suitable way, based on the success of the previous iteration. The global convergence of the sequence of iterations and its superlinear convergence rate under a local Hölderian error bound assumption are shown. Notably, these convergence results are obtained without requiring a global Lipschitz property for ( nabla f ), which, to the best of the authors’ knowledge, is a novel contribution for proximal Newton methods. To highlight the efficiency of our approach, we provide numerical comparisons with an IRPNM using a line search globalization and a modern FISTA-type method.
在本文中,我们介绍了一种不需要任何直线搜索的非精确正则化近似牛顿法(IRPNM)。该方法旨在最小化两次连续可微分函数 f 与凸(可能是非光滑和扩展值)函数 (varphi )之和。我们不是通过直线搜索程序来控制步长,而是根据前一次迭代的成功率,以适当的方式更新正则化参数。在局部霍尔德误差约束假设下,迭代序列的全局收敛性及其超线性收敛率得到了证明。值得注意的是,这些收敛结果是在不要求 ( nabla f ) 的全局 Lipschitz 属性的情况下获得的,据作者所知,这是近似牛顿方法的一个新贡献。为了突出我们方法的效率,我们提供了使用线搜索全局化的 IRPNM 和现代 FISTA 类型方法的数值比较。
{"title":"An inexact regularized proximal Newton method without line search","authors":"Simeon vom Dahl, Christian Kanzow","doi":"10.1007/s10589-024-00600-9","DOIUrl":"https://doi.org/10.1007/s10589-024-00600-9","url":null,"abstract":"<p>In this paper, we introduce an inexact regularized proximal Newton method (IRPNM) that does not require any line search. The method is designed to minimize the sum of a twice continuously differentiable function <i>f</i> and a convex (possibly non-smooth and extended-valued) function <span>(varphi )</span>. Instead of controlling a step size by a line search procedure, we update the regularization parameter in a suitable way, based on the success of the previous iteration. The global convergence of the sequence of iterations and its superlinear convergence rate under a local Hölderian error bound assumption are shown. Notably, these convergence results are obtained without requiring a global Lipschitz property for <span>( nabla f )</span>, which, to the best of the authors’ knowledge, is a novel contribution for proximal Newton methods. To highlight the efficiency of our approach, we provide numerical comparisons with an IRPNM using a line search globalization and a modern FISTA-type method.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"29 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1007/s10589-024-00597-1
Serge Gratton, Valentin Mercier, Elisa Riccietti, Philippe L. Toint
Multi-level methods are widely used for the solution of large-scale problems, because of their computational advantages and exploitation of the complementarity between the involved sub-problems. After a re-interpretation of multi-level methods from a block-coordinate point of view, we propose a multi-level algorithm for the solution of nonlinear optimization problems and analyze its evaluation complexity. We apply it to the solution of partial differential equations using physics-informed neural networks (PINNs) and consider two different types of neural architectures, a generic feedforward network and a frequency-aware network. We show that our approach is particularly effective if coupled with these specialized architectures and that this coupling results in better solutions and significant computational savings.
{"title":"A block-coordinate approach of multi-level optimization with an application to physics-informed neural networks","authors":"Serge Gratton, Valentin Mercier, Elisa Riccietti, Philippe L. Toint","doi":"10.1007/s10589-024-00597-1","DOIUrl":"https://doi.org/10.1007/s10589-024-00597-1","url":null,"abstract":"<p>Multi-level methods are widely used for the solution of large-scale problems, because of their computational advantages and exploitation of the complementarity between the involved sub-problems. After a re-interpretation of multi-level methods from a block-coordinate point of view, we propose a multi-level algorithm for the solution of nonlinear optimization problems and analyze its evaluation complexity. We apply it to the solution of partial differential equations using physics-informed neural networks (PINNs) and consider two different types of neural architectures, a generic feedforward network and a frequency-aware network. We show that our approach is particularly effective if coupled with these specialized architectures and that this coupling results in better solutions and significant computational savings.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"58 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1007/s10589-024-00596-2
C. W. Royer, O. Sohab, L. N. Vicente
Derivative-free optimization (DFO) consists in finding the best value of an objective function without relying on derivatives. To tackle such problems, one may build approximate derivatives, using for instance finite-difference estimates. One may also design algorithmic strategies that perform space exploration and seek improvement over the current point. The first type of strategy often provides good performance on smooth problems but at the expense of more function evaluations. The second type is cheaper and typically handles non-smoothness or noise in the objective better. Recently, full-low evaluation methods have been proposed as a hybrid class of DFO algorithms that combine both strategies, respectively denoted as Full-Eval and Low-Eval. In the unconstrained case, these methods showed promising numerical performance. In this paper, we extend the full-low evaluation framework to bound and linearly constrained derivative-free optimization. We derive convergence results for an instance of this framework, that combines finite-difference quasi-Newton steps with probabilistic direct-search steps. The former are projected onto the feasible set, while the latter are defined within tangent cones identified by nearby active constraints. We illustrate the practical performance of our instance on standard linearly constrained problems, that we adapt to introduce noisy evaluations as well as non-smoothness. In all cases, our method performs favorably compared to algorithms that rely solely on Full-eval or Low-eval iterations.
{"title":"Full-low evaluation methods for bound and linearly constrained derivative-free optimization","authors":"C. W. Royer, O. Sohab, L. N. Vicente","doi":"10.1007/s10589-024-00596-2","DOIUrl":"https://doi.org/10.1007/s10589-024-00596-2","url":null,"abstract":"<p>Derivative-free optimization (DFO) consists in finding the best value of an objective function without relying on derivatives. To tackle such problems, one may build approximate derivatives, using for instance finite-difference estimates. One may also design algorithmic strategies that perform space exploration and seek improvement over the current point. The first type of strategy often provides good performance on smooth problems but at the expense of more function evaluations. The second type is cheaper and typically handles non-smoothness or noise in the objective better. Recently, full-low evaluation methods have been proposed as a hybrid class of DFO algorithms that combine both strategies, respectively denoted as Full-Eval and Low-Eval. In the unconstrained case, these methods showed promising numerical performance. In this paper, we extend the full-low evaluation framework to bound and linearly constrained derivative-free optimization. We derive convergence results for an instance of this framework, that combines finite-difference quasi-Newton steps with probabilistic direct-search steps. The former are projected onto the feasible set, while the latter are defined within tangent cones identified by nearby active constraints. We illustrate the practical performance of our instance on standard linearly constrained problems, that we adapt to introduce noisy evaluations as well as non-smoothness. In all cases, our method performs favorably compared to algorithms that rely solely on Full-eval or Low-eval iterations.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"295 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1007/s10589-024-00595-3
Qinsi Wang, Wei Hong Yang
Recently, the proximal Newton-type method and its variants have been generalized to solve composite optimization problems over the Stiefel manifold whose objective function is the summation of a smooth function and a nonsmooth function. In this paper, we propose an adaptive quadratically regularized proximal quasi-Newton method, named ARPQN, to solve this class of problems. Under some mild assumptions, the global convergence, the local linear convergence rate and the iteration complexity of ARPQN are established. Numerical experiments and comparisons with other state-of-the-art methods indicate that ARPQN is very promising. We also propose an adaptive quadratically regularized proximal Newton method, named ARPN. It is shown the ARPN method has a local superlinear convergence rate under certain reasonable assumptions, which demonstrates attractive convergence properties of regularized proximal Newton methods.
{"title":"An adaptive regularized proximal Newton-type methods for composite optimization over the Stiefel manifold","authors":"Qinsi Wang, Wei Hong Yang","doi":"10.1007/s10589-024-00595-3","DOIUrl":"https://doi.org/10.1007/s10589-024-00595-3","url":null,"abstract":"<p>Recently, the proximal Newton-type method and its variants have been generalized to solve composite optimization problems over the Stiefel manifold whose objective function is the summation of a smooth function and a nonsmooth function. In this paper, we propose an adaptive quadratically regularized proximal quasi-Newton method, named ARPQN, to solve this class of problems. Under some mild assumptions, the global convergence, the local linear convergence rate and the iteration complexity of ARPQN are established. Numerical experiments and comparisons with other state-of-the-art methods indicate that ARPQN is very promising. We also propose an adaptive quadratically regularized proximal Newton method, named ARPN. It is shown the ARPN method has a local superlinear convergence rate under certain reasonable assumptions, which demonstrates attractive convergence properties of regularized proximal Newton methods.\u0000</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"154 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141780194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}