What and When to Explain?

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Pub Date : 2023-09-27 DOI:10.1145/3610886
Gwangbin Kim, Dohyeon Yeo, Taewoo Jo, Daniela Rus, SeungJun Kim
{"title":"What and When to Explain?","authors":"Gwangbin Kim, Dohyeon Yeo, Taewoo Jo, Daniela Rus, SeungJun Kim","doi":"10.1145/3610886","DOIUrl":null,"url":null,"abstract":"Explanations in automated vehicles help passengers understand the vehicle's state and capabilities, leading to increased trust in the technology. Specifically, for passengers of SAE Level 4 and 5 vehicles who are not engaged in the driving process, the enhanced sense of control provided by explanations reduces potential anxieties, enabling them to fully leverage the benefits of automation. To construct explanations that enhance trust and situational awareness without disturbing passengers, we suggest testing with people who ultimately employ such explanations, ideally under real-world driving conditions. In this study, we examined the impact of various visual explanation types (perception, attention, perception+attention) and timing mechanisms (constantly provided or only under risky scenarios) on passenger experience under naturalistic driving scenarios using actual vehicles with mixed-reality support. Our findings indicate that visualizing the vehicle's perception state improves the perceived usability, trust, safety, and situational awareness without adding cognitive burden, even without explaining the underlying causes. We also demonstrate that the traffic risk probability could be used to control the timing of an explanation delivery, particularly when passengers are overwhelmed with information. Our study's on-road evaluation method offers a safe and reliable testing environment and can be easily customized for other AI models and explanation modalities.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"50 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3610886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Explanations in automated vehicles help passengers understand the vehicle's state and capabilities, leading to increased trust in the technology. Specifically, for passengers of SAE Level 4 and 5 vehicles who are not engaged in the driving process, the enhanced sense of control provided by explanations reduces potential anxieties, enabling them to fully leverage the benefits of automation. To construct explanations that enhance trust and situational awareness without disturbing passengers, we suggest testing with people who ultimately employ such explanations, ideally under real-world driving conditions. In this study, we examined the impact of various visual explanation types (perception, attention, perception+attention) and timing mechanisms (constantly provided or only under risky scenarios) on passenger experience under naturalistic driving scenarios using actual vehicles with mixed-reality support. Our findings indicate that visualizing the vehicle's perception state improves the perceived usability, trust, safety, and situational awareness without adding cognitive burden, even without explaining the underlying causes. We also demonstrate that the traffic risk probability could be used to control the timing of an explanation delivery, particularly when passengers are overwhelmed with information. Our study's on-road evaluation method offers a safe and reliable testing environment and can be easily customized for other AI models and explanation modalities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解释什么,什么时候解释?
自动驾驶汽车的解释有助于乘客了解车辆的状态和能力,从而增加对这项技术的信任。具体来说,对于没有参与驾驶过程的SAE 4级和5级车辆的乘客来说,解释所提供的控制感增强减少了潜在的焦虑,使他们能够充分利用自动化带来的好处。为了在不打扰乘客的情况下构建增强信任和态势感知的解释,我们建议对最终采用这些解释的人进行测试,理想情况下是在真实的驾驶条件下。在本研究中,我们使用具有混合现实支持的真实车辆,研究了各种视觉解释类型(感知、注意、感知+注意)和定时机制(持续提供或仅在危险场景下提供)对自然驾驶场景下乘客体验的影响。我们的研究结果表明,可视化车辆的感知状态在不增加认知负担的情况下提高了感知可用性、信任度、安全性和态势感知,甚至没有解释潜在的原因。我们还证明了交通风险概率可以用来控制解释交付的时间,特别是当乘客被信息淹没时。我们研究的道路评估方法提供了一个安全可靠的测试环境,并且可以很容易地为其他人工智能模型和解释方式定制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
期刊最新文献
Orientation-Aware 3D SLAM in Alternating Magnetic Field from Powerlines UniFi PASTEL Unobtrusive Air Leakage Estimation for Earables with In-ear Microphones PyroSense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1