HabitSense: A Privacy-Aware, AI-Enhanced Multimodal Wearable Platform for mHealth Applications.

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Pub Date : 2024-09-01 Epub Date: 2024-09-09 DOI:10.1145/3678591
Glenn J Fernandes, Jiayi Zheng, Mahdi Pedram, Christopher Romano, Farzad Shahabi, Blaine Rothrock, Thomas Cohen, Helen Zhu, Tanmeet S Butani, Josiah Hester, Aggelos K Katsaggelos, Nabil Alshurafa
{"title":"HabitSense: A Privacy-Aware, AI-Enhanced Multimodal Wearable Platform for mHealth Applications.","authors":"Glenn J Fernandes, Jiayi Zheng, Mahdi Pedram, Christopher Romano, Farzad Shahabi, Blaine Rothrock, Thomas Cohen, Helen Zhu, Tanmeet S Butani, Josiah Hester, Aggelos K Katsaggelos, Nabil Alshurafa","doi":"10.1145/3678591","DOIUrl":null,"url":null,"abstract":"<p><p>Wearable cameras provide an objective method to visually confirm and automate the detection of health-risk behaviors such as smoking and overeating, which is critical for developing and testing adaptive treatment interventions. Despite the potential of wearable camera systems, adoption is hindered by inadequate clinician input in the design, user privacy concerns, and user burden. To address these barriers, we introduced HabitSense, an open-source, multi-modal neck-worn platform developed with input from focus groups with clinicians (N=36) and user feedback from in-wild studies involving 105 participants over 35 days. Optimized for monitoring health-risk behaviors, the platform utilizes RGB, thermal, and inertial measurement unit sensors to detect eating and smoking events in real time. In a 7-day study involving 15 participants, HabitSense recorded 768 hours of footage, capturing 420.91 minutes of hand-to-mouth gestures associated with eating and smoking data crucial for training machine learning models, achieving a 92% F1-score in gesture recognition. To address privacy concerns, the platform records only during likely health-risk behavior events using SECURE, a smart activation algorithm. Additionally, HabitSense employs on-device obfuscation algorithms that selectively obfuscate the background during recording, maintaining individual privacy while leaving gestures related to health-risk behaviors unobfuscated. Our implementation of SECURE has resulted in a 48% reduction in storage needs and a 30% increase in battery life. This paper highlights the critical roles of clinician feedback, extensive field testing, and privacy-enhancing algorithms in developing an unobtrusive, lightweight, and reproducible wearable system that is both feasible and acceptable for monitoring health-risk behaviors in real-world settings.</p>","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"8 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879279/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3678591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Wearable cameras provide an objective method to visually confirm and automate the detection of health-risk behaviors such as smoking and overeating, which is critical for developing and testing adaptive treatment interventions. Despite the potential of wearable camera systems, adoption is hindered by inadequate clinician input in the design, user privacy concerns, and user burden. To address these barriers, we introduced HabitSense, an open-source, multi-modal neck-worn platform developed with input from focus groups with clinicians (N=36) and user feedback from in-wild studies involving 105 participants over 35 days. Optimized for monitoring health-risk behaviors, the platform utilizes RGB, thermal, and inertial measurement unit sensors to detect eating and smoking events in real time. In a 7-day study involving 15 participants, HabitSense recorded 768 hours of footage, capturing 420.91 minutes of hand-to-mouth gestures associated with eating and smoking data crucial for training machine learning models, achieving a 92% F1-score in gesture recognition. To address privacy concerns, the platform records only during likely health-risk behavior events using SECURE, a smart activation algorithm. Additionally, HabitSense employs on-device obfuscation algorithms that selectively obfuscate the background during recording, maintaining individual privacy while leaving gestures related to health-risk behaviors unobfuscated. Our implementation of SECURE has resulted in a 48% reduction in storage needs and a 30% increase in battery life. This paper highlights the critical roles of clinician feedback, extensive field testing, and privacy-enhancing algorithms in developing an unobtrusive, lightweight, and reproducible wearable system that is both feasible and acceptable for monitoring health-risk behaviors in real-world settings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
期刊最新文献
Beyond Detection: Towards Actionable Sensing Research in Clinical Mental Healthcare. Ask Less, Learn More: Adapting Ecological Momentary Assessment Survey Length by Modeling Question-Answer Information Gain. MindScape Study: Integrating LLM and Behavioral Sensing for Personalized AI-Driven Journaling Experiences. HabitSense: A Privacy-Aware, AI-Enhanced Multimodal Wearable Platform for mHealth Applications. Mental-LLM: Leveraging Large Language Models for Mental Health Prediction via Online Text Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1