PATCH

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Pub Date : 2023-09-27 DOI:10.1145/3610885
Juexing Wang, Guangjing Wang, Xiao Zhang, Li Liu, Huacheng Zeng, Li Xiao, Zhichao Cao, Lin Gu, Tianxing Li
{"title":"PATCH","authors":"Juexing Wang, Guangjing Wang, Xiao Zhang, Li Liu, Huacheng Zeng, Li Xiao, Zhichao Cao, Lin Gu, Tianxing Li","doi":"10.1145/3610885","DOIUrl":null,"url":null,"abstract":"Recent advancements in deep learning have shown that multimodal inference can be particularly useful in tasks like autonomous driving, human health, and production line monitoring. However, deploying state-of-the-art multimodal models in distributed IoT systems poses unique challenges since the sensor data from low-cost edge devices can get corrupted, lost, or delayed before reaching the cloud. These problems are magnified in the presence of asymmetric data generation rates from different sensor modalities, wireless network dynamics, or unpredictable sensor behavior, leading to either increased latency or degradation in inference accuracy, which could affect the normal operation of the system with severe consequences like human injury or car accident. In this paper, we propose PATCH, a framework of speculative inference to adapt to these complex scenarios. PATCH serves as a plug-in module in the existing multimodal models, and it enables speculative inference of these off-the-shelf deep learning models. PATCH consists of 1) a Masked-AutoEncoder-based cross-modality imputation module to impute missing data using partially-available sensor data, 2) a lightweight feature pair ranking module that effectively limits the searching space for the optimal imputation configuration with low computation overhead, and 3) a data alignment module that aligns multimodal heterogeneous data streams without using accurate timestamp or external synchronization mechanisms. We implement PATCH in nine popular multimodal models using five public datasets and one self-collected dataset. The experimental results show that PATCH achieves up to 13% mean accuracy improvement over the state-of-art method while only using 10% of training data and reducing the training overhead by 73% compared to the original cost of retraining the model.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"42 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3610885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in deep learning have shown that multimodal inference can be particularly useful in tasks like autonomous driving, human health, and production line monitoring. However, deploying state-of-the-art multimodal models in distributed IoT systems poses unique challenges since the sensor data from low-cost edge devices can get corrupted, lost, or delayed before reaching the cloud. These problems are magnified in the presence of asymmetric data generation rates from different sensor modalities, wireless network dynamics, or unpredictable sensor behavior, leading to either increased latency or degradation in inference accuracy, which could affect the normal operation of the system with severe consequences like human injury or car accident. In this paper, we propose PATCH, a framework of speculative inference to adapt to these complex scenarios. PATCH serves as a plug-in module in the existing multimodal models, and it enables speculative inference of these off-the-shelf deep learning models. PATCH consists of 1) a Masked-AutoEncoder-based cross-modality imputation module to impute missing data using partially-available sensor data, 2) a lightweight feature pair ranking module that effectively limits the searching space for the optimal imputation configuration with low computation overhead, and 3) a data alignment module that aligns multimodal heterogeneous data streams without using accurate timestamp or external synchronization mechanisms. We implement PATCH in nine popular multimodal models using five public datasets and one self-collected dataset. The experimental results show that PATCH achieves up to 13% mean accuracy improvement over the state-of-art method while only using 10% of training data and reducing the training overhead by 73% compared to the original cost of retraining the model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
补丁
深度学习的最新进展表明,多模态推理在自动驾驶、人类健康和生产线监控等任务中特别有用。然而,在分布式物联网系统中部署最先进的多模态模型带来了独特的挑战,因为来自低成本边缘设备的传感器数据在到达云之前可能会损坏、丢失或延迟。这些问题在来自不同传感器模式、无线网络动态或不可预测的传感器行为的不对称数据生成率的存在下被放大,导致延迟增加或推理精度下降,这可能会影响系统的正常运行,造成严重后果,如人身伤害或车祸。在本文中,我们提出了PATCH,一个推测推理框架,以适应这些复杂的场景。PATCH在现有的多模态模型中充当插件模块,它可以对这些现成的深度学习模型进行推测推断。PATCH包括:1)基于mask - autoencoder的跨模态输入模块,该模块使用部分可用的传感器数据来输入缺失数据;2)轻量级特征对排序模块,该模块有效地限制了最佳输入配置的搜索空间,且计算开销低;3)数据对齐模块,该模块无需使用精确的时间戳或外部同步机制即可对齐多模态异构数据流。我们使用5个公共数据集和1个自收集数据集在9个流行的多模态模型中实现PATCH。实验结果表明,与现有方法相比,PATCH在只使用10%的训练数据的情况下,平均准确率提高了13%,与原始模型再训练成本相比,训练开销减少了73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
期刊最新文献
Orientation-Aware 3D SLAM in Alternating Magnetic Field from Powerlines UniFi PASTEL Unobtrusive Air Leakage Estimation for Earables with In-ear Microphones PyroSense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1