A Design of Tunable Band Gaps in Anti-tetrachiral Structures Based on Shape Memory Alloy

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-09-27 DOI:10.1007/s10338-023-00426-8
Zhuxin Mao, Shutian Liu
{"title":"A Design of Tunable Band Gaps in Anti-tetrachiral Structures Based on Shape Memory Alloy","authors":"Zhuxin Mao,&nbsp;Shutian Liu","doi":"10.1007/s10338-023-00426-8","DOIUrl":null,"url":null,"abstract":"<div><p>Benefitted from the properties of band gaps, elastic metamaterials (EMs) have attracted extensive attention in vibration and noise reduction. However, the width and position of band gaps are fixed once the traditional structures are manufactured. It is difficult to adapt to complex and changeable service conditions. Therefore, research on intelligent tunable band gaps is of great importance and has become a hot issue in EMs. To achieve smart control of band gaps, a design of tunable band gaps in anti-tetrachiral structures based on shape memory alloy (SMA) is proposed in this paper. By governing the phase transition process of SMA, the geometric configuration and material properties of structures can be changed, resulting in tunable band gaps. Therein, the energy band structures and generation mechanism of tunable band gaps in different states are studied, realizing intelligent manipulation of elastic waves. In addition, the influence of different geometric parameters on band gaps is investigated, and the desired bandgap position can be customized, making bandgap control more flexible. In summary, the proposed SMA-based anti-tetrachiral metamaterial provides valuable reference for the application of SMA materials and the development of EMs.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10338-023-00426-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-023-00426-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Benefitted from the properties of band gaps, elastic metamaterials (EMs) have attracted extensive attention in vibration and noise reduction. However, the width and position of band gaps are fixed once the traditional structures are manufactured. It is difficult to adapt to complex and changeable service conditions. Therefore, research on intelligent tunable band gaps is of great importance and has become a hot issue in EMs. To achieve smart control of band gaps, a design of tunable band gaps in anti-tetrachiral structures based on shape memory alloy (SMA) is proposed in this paper. By governing the phase transition process of SMA, the geometric configuration and material properties of structures can be changed, resulting in tunable band gaps. Therein, the energy band structures and generation mechanism of tunable band gaps in different states are studied, realizing intelligent manipulation of elastic waves. In addition, the influence of different geometric parameters on band gaps is investigated, and the desired bandgap position can be customized, making bandgap control more flexible. In summary, the proposed SMA-based anti-tetrachiral metamaterial provides valuable reference for the application of SMA materials and the development of EMs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于形状记忆合金的反四手结构可调带隙设计
摘要:弹性超材料由于具有带隙的特性,在减振降噪方面受到了广泛的关注。然而,一旦制造出传统结构,带隙的宽度和位置是固定的。难以适应复杂多变的使用条件。因此,智能可调带隙的研究具有重要的意义,已成为电子器件领域的研究热点。为实现带隙的智能控制,提出了一种基于形状记忆合金(SMA)的反四手体结构带隙可调设计方法。通过控制SMA的相变过程,可以改变结构的几何构型和材料性能,从而实现可调谐的带隙。其中,研究了不同状态下的能带结构和可调带隙的产生机理,实现了弹性波的智能操纵。此外,还研究了不同几何参数对带隙的影响,并可以定制所需的带隙位置,使带隙控制更加灵活。综上所述,基于SMA的抗四手性超材料为SMA材料的应用和EMs的发展提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1