Tianben Wang, Zhangben Li, Honghao Yan, Xiantao Liu, Boqin Liu, Shengjie Li, Zhongyu Ma, Jin Hu, Daqing Zhang, Tao Gu
{"title":"AudioGuard: Omnidirectional Indoor Intrusion Detection Using Audio Device","authors":"Tianben Wang, Zhangben Li, Honghao Yan, Xiantao Liu, Boqin Liu, Shengjie Li, Zhongyu Ma, Jin Hu, Daqing Zhang, Tao Gu","doi":"10.1145/3625305","DOIUrl":null,"url":null,"abstract":"Indoor intrusion detection is a critical task for home security. Previous works in intrusion detection suffer from the problems such as blind spots in non-line-of-sight (NLOS) areas, restricted device locations, massive offline training required, and privacy concern. In this paper, we design and implement an omnidirectional indoor intrusion detection system, named AudioGuard , using only a pair of speaker and microphone. AudioGuard is able to detect both line-of-sight (LOS) and NLOS intrusions. Our observation of acoustic signal propagation in an indoor environment shows that there exist abundant multipath reflections and human movement introduces Doppler shift in echo signals. We hence capture periodical Doppler shift caused by intruder's walking motion to detect intrusion. Specifically, we first extract the Doppler shift embedded in echo signals, we then propose a periodicity polarization method to cancel out the impact of the change of radial angle and the distance on periodicity of Doppler shift. Finally, we detect intrusion by measuring periodicity of Doppler shift over time. Extensive experiments show that AudioGuard achieves a miss report rate of 0% and 1.75% for LOS and NLOS intrusion, respectively, and a false alarm rate of 4.17%.","PeriodicalId":500855,"journal":{"name":"ACM transactions on the internet of things","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on the internet of things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3625305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Indoor intrusion detection is a critical task for home security. Previous works in intrusion detection suffer from the problems such as blind spots in non-line-of-sight (NLOS) areas, restricted device locations, massive offline training required, and privacy concern. In this paper, we design and implement an omnidirectional indoor intrusion detection system, named AudioGuard , using only a pair of speaker and microphone. AudioGuard is able to detect both line-of-sight (LOS) and NLOS intrusions. Our observation of acoustic signal propagation in an indoor environment shows that there exist abundant multipath reflections and human movement introduces Doppler shift in echo signals. We hence capture periodical Doppler shift caused by intruder's walking motion to detect intrusion. Specifically, we first extract the Doppler shift embedded in echo signals, we then propose a periodicity polarization method to cancel out the impact of the change of radial angle and the distance on periodicity of Doppler shift. Finally, we detect intrusion by measuring periodicity of Doppler shift over time. Extensive experiments show that AudioGuard achieves a miss report rate of 0% and 1.75% for LOS and NLOS intrusion, respectively, and a false alarm rate of 4.17%.