AudioGuard: Omnidirectional Indoor Intrusion Detection Using Audio Device

Tianben Wang, Zhangben Li, Honghao Yan, Xiantao Liu, Boqin Liu, Shengjie Li, Zhongyu Ma, Jin Hu, Daqing Zhang, Tao Gu
{"title":"AudioGuard: Omnidirectional Indoor Intrusion Detection Using Audio Device","authors":"Tianben Wang, Zhangben Li, Honghao Yan, Xiantao Liu, Boqin Liu, Shengjie Li, Zhongyu Ma, Jin Hu, Daqing Zhang, Tao Gu","doi":"10.1145/3625305","DOIUrl":null,"url":null,"abstract":"Indoor intrusion detection is a critical task for home security. Previous works in intrusion detection suffer from the problems such as blind spots in non-line-of-sight (NLOS) areas, restricted device locations, massive offline training required, and privacy concern. In this paper, we design and implement an omnidirectional indoor intrusion detection system, named AudioGuard , using only a pair of speaker and microphone. AudioGuard is able to detect both line-of-sight (LOS) and NLOS intrusions. Our observation of acoustic signal propagation in an indoor environment shows that there exist abundant multipath reflections and human movement introduces Doppler shift in echo signals. We hence capture periodical Doppler shift caused by intruder's walking motion to detect intrusion. Specifically, we first extract the Doppler shift embedded in echo signals, we then propose a periodicity polarization method to cancel out the impact of the change of radial angle and the distance on periodicity of Doppler shift. Finally, we detect intrusion by measuring periodicity of Doppler shift over time. Extensive experiments show that AudioGuard achieves a miss report rate of 0% and 1.75% for LOS and NLOS intrusion, respectively, and a false alarm rate of 4.17%.","PeriodicalId":500855,"journal":{"name":"ACM transactions on the internet of things","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on the internet of things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3625305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Indoor intrusion detection is a critical task for home security. Previous works in intrusion detection suffer from the problems such as blind spots in non-line-of-sight (NLOS) areas, restricted device locations, massive offline training required, and privacy concern. In this paper, we design and implement an omnidirectional indoor intrusion detection system, named AudioGuard , using only a pair of speaker and microphone. AudioGuard is able to detect both line-of-sight (LOS) and NLOS intrusions. Our observation of acoustic signal propagation in an indoor environment shows that there exist abundant multipath reflections and human movement introduces Doppler shift in echo signals. We hence capture periodical Doppler shift caused by intruder's walking motion to detect intrusion. Specifically, we first extract the Doppler shift embedded in echo signals, we then propose a periodicity polarization method to cancel out the impact of the change of radial angle and the distance on periodicity of Doppler shift. Finally, we detect intrusion by measuring periodicity of Doppler shift over time. Extensive experiments show that AudioGuard achieves a miss report rate of 0% and 1.75% for LOS and NLOS intrusion, respectively, and a false alarm rate of 4.17%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AudioGuard:使用音频设备的全方位室内入侵检测
室内入侵检测是家庭安全的一项重要任务。以往的入侵检测工作存在非视距区域盲点、设备位置受限、需要大量离线训练、隐私问题等问题。本文设计并实现了一种全向室内入侵检测系统AudioGuard,该系统仅使用一对扬声器和麦克风。AudioGuard能够检测视线(LOS)和非视线(NLOS)入侵。我们对声信号在室内环境中的传播进行了观察,发现室内环境中存在着丰富的多径反射,人体运动引起了回波信号的多普勒频移。通过捕获入侵者行走运动引起的周期性多普勒频移来检测入侵。具体来说,我们首先提取回波信号中的多普勒频移,然后提出一种周期性极化方法来抵消径向角和距离变化对多普勒频移周期性的影响。最后,我们通过测量多普勒频移随时间的周期性来检测入侵。大量实验表明,AudioGuard对LOS和NLOS入侵的漏报率分别为0%和1.75%,虚警率为4.17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structure from Motion-Based Mapping for Autonomous Driving: Practice and Experience AudioGuard: Omnidirectional Indoor Intrusion Detection Using Audio Device Efficient IoT Traffic Inference: from Multi-View Classification to Progressive Monitoring Non-Contact Monitoring of Fatigue Driving Using FMCW Millimeter Wave Radar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1